

THE LIBRARY OF
THE UNIVERSITY OF CALIFORNIA LOS ANGELES

GIFT OF

Mrs. George I. Cochran

13- D: ichueguler, a whwo $3-$ a-tedes our hisuturnation hi
 $446,505=1886$.

Digitized by țe Internet Archive in 2007 with funding from Microsoft Corporation

THE

Nature and Utility

OF

MATHEMATICS,

WITH THE BEST METHODS OF INSTRU(\%TION EXPLAINED AND ILLUSTRATED

BY
CHARLES DAVIES, LL.D.,

EMIRRITUS PHOFESSOR OF HIGEER MATHEMATICS IN OOLUXBLA OOLLEGE,

NEW YORK:
PUBLISHED BY A. S. BARNES \& CO., 111 and 113 William Street.

DAVIES'MATHEMATICS.

 IN THREE PARTS.

 IN THREE PARTS.}

I-COMMON SOHOOL COURSE.

Davies' Primary Arlthmetic.-The fundamental principles displayed in Object Lessons.
Davies, Intelicetnal Arithmetic.-Refering all operations to the uult 1 as the only tangible basis for logical development.
Davies' Elements of Written Arithmetic. - A practical introduction to the whole subject. Theory subordinated to Practice.
Davies, Lractical Arithmetic.-The combination of Theory and Practice, iutended to be clear, exact, brief, and comprehensive.
II--AOADEMIO COURSE.

Davics, University Aritimetic.-Treating the subject exhaustively as a science, iu a logical series of connected propositions.
Davies, Elementary Algebra.-A connecting link, conducting the pupil casily from arithmetical processcs to abstract avalysis.
Davies? Unlversity Algebra. -For fnstitutions desiring a more complete but not the fullest course in pure Algebra.
Davies' Practieal Ma thematles. -The ecience practically applied to the nseful arts, as Drawing, Architecture, Surveying, Mechanics, etc.
Davies, Elementary Geometry.-The important principles in simple forin, but whth all the exactucss of rigorous reasoning.
Davies, Licments of Surveylug.-Re-written in 1870. A simple and practical presentation of the subject for the sehoiar and surveyor.

III.-OOLLEGIATE OOURSE.

Davles' Bourdon'm Algebra. - Embracing Starm's Theorem, and a mot exhaustive and scholariy course.
Davice' University Algebra.-A shorter course than Bourdon, for Institutions having less time to give the subjuct.
Davies' Legendre's Geometry. -The original is the best Geometry of Europe. 'the revised edition is well known.
Davien, Aualytical Geometry. - Being a full course, embracing the cquation of surfaces of the second degrce.
Davies Differential and Intcgral Calculna.-Constructed on the basis of Continuous Quantity aud Consecutive Differences.
Davies, Analytieal Geometry and Calculns.-The shorter treatises, combined in one volume, as more avaliable for American courses of study.
Davies Deseriptive Geometry. - With application to Spherical Trigonometry, Spherical Projections, and Warped Surfaces.
Davies' Shades, Shadows, and Perspective. - A succinct exposition of the mathematical principles involved.
Davien a Peck' Mathematieal Dletionary.-Embracing the definitlons of all the terms, and also a Cyclopedia of Mathematics.
Davies, Natnre and Utllity of Mathematles.-Embracing a condensed Logical Analysis of the entire Science, and of its General Uses.

Entered according to Act of Congress. In the year Elghteen Hundred and Seventy-three, by CHARLES DAVIES,
In the O\#fice of the IAbrarian of Congress, at Washington.

Engıneering \&

 MathematicalSciences
Library

9

PREFACE. D $28 n$

The following work is not a series of speculations. It is but an analysis of that system of mathematical instruction which has been steadily pursued at the Military Academy nearly half a century, and which has given to that institution its celebrity as a school of mathematical science.

It is of the essence of that system that a principle be taught before it is applied to practice; that general principles and general laws be taught, for their contemplation is far more improving to the mind than the examination of isolated propositions; and that when such principles and such laws are fully comprehended, their applications be then taught, as consequences, or practical results.

This view of education led, at an early day, to the union of the French and English systems of Mathematics. By this union the exact and beautiful methods of generalization, which distinguish the French school, were blended with the practical methods of the English system.

The fruits of this new system of instruction have been abundant. The graduates of the Military Academy have been sought for wherever science of the highest grade has been needed. Russia has sought them to construct her railroads;* the Coast Survey needed their aid; the works of internal improvement of the first class in our country, have mostly been conducted under their direction; and the war with Mexico afforded ample opporanity for showing the thousand ways in which science-the highest class of knowl-edge-may be made available in practice.

[^0]All these results are due to the system of instruction. In that system, Mathematics is the basis-Science precedes Art -Theory goes before Practice-the general formula embraces all the particulars.

Although my official connection with the Military Academy was terminated many years since, yet the general system of Matliematical instruction has not been changed. Younger and able professors have extended and developed it, and it now forms an important element in the education of the country.

The present work is a modification, in many important particulars, of the Logic and Utility of Mathematics, published in the year 1850. The changes in the Text, seemed to require a change in the Title.

It was deemed necessary to the full development of the plan of the work, to give a general view of the subject of Logic. The materials of Book I. have been drawn, mainly, from the works of Archbishop Whately and Mr. Mill. Although the general outline of the subject has but little resemblance to the work of either author, yet very much has been taken from both; and in all cases where it could be done consistently with my own plan, I have adopted their exact language. This remark is particularly applicable to Chapter III., Book I., which is taken, with few alterations, from Whately.

For a full account of the objects and plan of the work, the reader is referred to the Introduction.

> Fisheidl Landivg, January, 1873.

CONTENTS.

INTRODUCTION.

PAGEObjects and Plan of tie Work. 11-27
B 00 K .
LOGIC.
CHAPTER 1.
Definitions-Operations of the Mind-Terms defined. $27-41$
section
Definitions 1- 6
Operations of the Mind concerned in Reasoning 6-12
Abstraction 12-14
Generalization 14-22
Terms-Singular Terms-Common Terms 15
Classification. 16-20
Nature of Common Terms 20
Science 21
Art 22
CHAPTER II.
pags
Sources and Means of Knowledge-Induction. $41-54$
BECTION
Knowledge 23
Facts and Truths. 24-27
Intuitive Truths. 27
Logical Truths 28
Logic. 29
Induction $30-34$
CHAPTER III.
Deduction-Nature of the Syllogism-Its Uses and Ap- page
plications 54-97
section
Deduction 34
Propositions $35-40$
Syllogism 40-42
Analytical Outline of Deduction 42-67
Aristotle's Dictum 54-61
Distribution and Non-distribution of Terms. 61-67
Rules for examining Syllogisms 67
Of Fallacies 68-71
Concluding Remarks. $71-75$

B $00 \mathrm{KII}$.

MATHEMATICAL SCIENCE.

CHAPTER I.

Quantity and Mathematical Science defined-1)iffer- ent kinds of Quantity - Lavguage of Mathematics explained-Subjects Classified-Unit of Measure defined-Mathematics a Deductive Science 99
SECTIOX
Quantity-Defined 75
Mathematics Defined 76
Kinds of Quantity-Number and Space. 77-87
Language of Mathematics 87-91
Language of Number-Geometry-Analysis 91-98
Pure Mathematics 98-104
Mixed Mathematics 104-105
Quantity Measured 105-108
Comparison of Quantities 108-109
Axioms-Equality-Inequality 109-111
CHAPTER II.
Aritimetic-Soience and Art of Numbers 119
SECTION I.
First Notions of Numbers
section
Ideas of Numbers Generalized 114-117
Unity and a Unit Defined 117
Simple and Denominate Numbera 118-120
Alphabet-Words-Grammar 120
Arithmetical Alphabet 121
Spelling and Reading in Addition 122-127
Spelling and Reading in Subtraction 127-129
BECTION
Spelling and Reading in Multiplication 129
Spelling and Reading in Division 130
Units increasing by the Scale of Tens 131-138
Units increasing by Varying Scales 138
Integral Units of Arithmetic 139-141
Different Kinds of Units 141-157
Advantages of the System of Units 157-158
Metric System 158-159
System of Unities applied to the Four Ground Rules 159-163
SECTION II.
Fractional Units changing by the Scale of Tens 163-166
Fractional Units in general 166-169
Advantages of the System of Fractional Units 169-171
SECTION III.
Proportion and Ratio $171-180$
SECTION IV.
Applications of the Science of Arithmetic 180-188
SECTION V.
Methods of teaching Arithmetic considered 188
Order of Subjects. 188-190
Abstract Units 190-192
Fractional Units 192-193
Denominate Units 193-194
Ratio and Proportion 194-196
Arithmetical Language 196-204
Necessity of Exact Definitions and Terms. 204-210
How should the Subject be presented 210-213
Text-Books 213-218
First Arithmetic 218-231
Second Arithmetic. 231-235
Third Aritlmetic 235-240
Concluding Remarks 240-241

CHAPTER III.

Geometry deflned-Things of which it treats-Com-parison and Properties of Figures-DemonstiationProportion-Suggestions for Teaching.page 210BECTION
Geometry 241
Things of which it treats 242-253
Comparison of Figures with Units of Measure 253-260
Properties of Figures 260
Marks of what may be proved 261
Demonstrations 262-271
Proportion of Figures 271-274
Comparison of Figures 274-2i\%
Recapitulation-Suggestions for Teachers 27
CHAPTER IV.
Analysis - Algebra - Avalytical Geometry - Differ- page
8ECTION
Analysis 278-284
Algebra 284
Analytical Geometry 285-287
Differential and Integral Calculus. 287-290
Algebra further considered 290-300
Minus Sign 300-302
Subtraction 302
Multiplication 303-306
Zero and Infinity 300-311
Of the Equation. 311-315
Axioms 315
Equality-its Meaning in Geometry 316
Suggestions for those who teach Algebra 319

CHAPTER V.

Differential Calculus. 289abe
BECTION
Foundations of Mathematical Science 320-322 320-322
Limits-of Discontinuous Quantity 322-325
Given Quantity-Continuous Quantity 324-326
Consecutive Quantities and Tangents. 326-329
Lemmas of Newton. 329-337
Fruits of Newton's Theory 337-342
Different Definitions of Limits. 342-343
What Quantities are denoted by 0 343
Inscribed and Circumscribed Polygons 344
Differential Calculus-Language 344-346
APPENDIX.
PAGE
a Courbe of Mathematics-What it should be. 337
B 00 K III.
UTLITY OF MATHEMATICS.
CHAPTER I.
The Utility of Mathematics considered as a Means of Intellectual Training and Culture 349
CHAPTER II.
The Utility of Mathematics regarded as a Means of acquiring Knowledee-Baconlan Pimlosopey. 364
CHAPTER III.
The Utility of Mathematics considered as furnishina those Rules of Abt whici make Knowledge Practi- cally Effective 381
alpuabetical Lndex 397

I N TR 0 DUCTION.

OBJECTS AND PLAN OF THE WORK.

Utility and Progress are the two leading vility ideas of the present age. They were manifested and Ideas of the present age. They were manifested Progress: in the formation of our political and social insti- Their infututions, and have been further developed in the ence in gow extension of those institutions, with their subduing and civilizing influences, over the fairest portions of a great continent. They are now becoming the controlling elements in our systems In edacation of public instruction.

What, then, must be the basis of that system of education which shall embrace within its ho. rizon a Utility as comprehensive and a Progress as permanent as the ordinations of Providence, exhibited in the laws of nature, as made known by science? It must obviously be laid in the examination and analysis of those laws; and

Preparatory studies.
primarily, in those preparatory studies which fit and qualify the mind for such Divine Contemplations.

Becon's Fhilosophy.

Pliloso phy of the Ancients.

When Bacon had analyzed the philosophy of the ancients, he found it speculative. The great highways of life had been deserted. Nature, spread out to the intelligence of man, in all the minuteness and generality of its laws-in all the harmony and beauty which those laws develophad scarcely been consulted by the ancient philosophers. They had looked within, and not without. They sought to rear systems on the uncertain foundations of human hypothesis and speculation, instead of resting them on the immutable laws of Providence, as manifested in the material world. Bacon broke the bars of this mental prison-house: bade the mind go free. and investigate nature.

Foundativas of Racon's Phileeophy:

Bacon laid the foundations of his philosophy in organic laws, and explained the several proccoses of experience, observation, experiment, and induction, by which these laws are made known.

Why oppreedto Arioconteis He rejected the reasonings of Aristotle because they were not progressive and useful ; because they added little to knowledge, and contributed nothing to ameliorate the sufferings and elevate the condition of humanity

The time seems now to be at hand when the philosophy of Bacon is to find its full development. The only fear is, that in passing from a speculative to a practical philosophy, we may, for a time, lose sight of the fact, that Practice without Science is Empiricism; and that all which is truly great in the practical must be the application and result of an antecedent ideal.

What, then, are the sources of that Utility, and the basis of that Practical, which the pres. ent generation desire, and after which they are so anxiously seeking? What system of training and discipline will best develop and steady the intellect of the young; give vigor and expansion to thought, and stability to action? What course of study will most enlarge the sphere of investigation; give the greatest freedom to the mind without licentiousness, and the greatest freedom to action consistent with the laws of nature, and the' obligations of the social compact? What subject of study is, from its nature, most likely to ensure this training, and

What are the subjects of study? contribute to such results, and at the same time lay the foundations of all that is truly great in the Practical? It has seemed to me that math- Mothemastirs ematical science may lay claim to this pre-eminence.

Foundations of mathematical knowledge.

Laws of Nature.

Number and space.

The first impressions which the child receives of Number and Quantity are the foundations of his mathematical knowledge. They form, as it were, a part of his intellectual being. The laws of Nature are merely truths or generalized facts, in regard to matter, derived by induction from experience, observation, and experiment. The laws of mathematical science are generalized truths derived from the consideration of Number and Space. All the processes of inquiry and investigation are conducted according to fixed laws, and form a science ; and every new thought and higher impression form additional links in the lengthening chain.

Mathematical knowtedge:

The knowledge which mathematical science imparts to the mind is deep-profound-abiding. It gives rise to trains of thought, which are born in the pure ideal, and fed and nurtured by ar: acquaintance with physical nature in all its mi-

What it dues. nuteness and in all its grandeur : which survey the laws of elementary organization, by the microscope, and weigh the spheres in the balance of universal gravitation.

What the processe elficet.

The processes of mathematical science serve to give mental unity and wholeness. They impart that knowledge which applies the means of
crystallization to a chaos of scattered particulars, Right know. and discovers at once the general law, if there be one, which forms a connecting link between edge applies the means of crystallization. them. Such results can only be attained by minds highly disciplined by scientific combinations. In all these processes no fact of science is forgotten or lost. They are all engraved on the great tablet of universal truth, there to be read by succeeding generations so long as the laws of mind remain unchanged. This is stri-

It reconds and preserves truth. kingly illustrated by the fact, that any diligent student of a college may now read the works of Newton, or the Mécanique Céleste of La Place

The educator regards mathematical science as the great means of accomplishing his work. The definitions present clear and separate ideas, which the mind readily apprehends. The axioms The axioms are the simplest exercises of the reasoning faculty, and afford the most satisfactory results in the early use and employment of that faculty. The trains of reasoning which follow are combinations, according to logical rules, of what has been previously fully comprehendea, and the mind and the argument grow together, so that the thread of science and the warp of the

Influence of the study of mathematica on the mind intellect entwine themselves, and become inseparable. Such a training will lay the foundations
of systematic knowledge, so greatly preferable to conjectural judgments.

How the phllosopher regards mathematics:

The philosopher regards mathematical science as the mere tools of his higher vocation. Looking with a steady and anxious eye to Nature, and the great laws which regulate and govern all things, he becomes earnestly intent on their examination, and absorbed in the wonderful harmonies which he discovers. Urged forward by

Its necessity in him. these high impulses, he sometimes neglects that thorough preparation, in mathematical science, necessary to success; and is not unfrequently obliged, like Antæus, to touch again his mother earth, in order to renew his strength.

The riews of the practical man.

The mere practical man regards with favor only the results of science, deeming the reasonings through which these results are arrived at, quite superfluous. Such should remember that
Insuruments of the mind the mind requires instruments as well as the hands, and that it should be equally trained in their combinations and uses. Such is, indeed, now the complication of human affairs, that to do one thing well, it is necessary to know the properties and relations of many things. Every Every thing thing, whether existing in the abstract or in the material world; whether an element of knowl:
edge or a rule of art, has its connections and its law: to understand these connections and that law, is to know the thing. When the principle is clearly apprehended, the practice is easy'.

With these general views, and under a firm Mathemates conviction that mathematical science must become the great basis of education, I have bestowed much time and labor on its analysis, as a subject of knowledge. I have endeavured to present its elements separately, and in their connections; to point out and note the mental faculties which it calls into exercise ; to show why and how it develops those faculties; and in what respect it gives to the whole mental machinery greater power and certainty of action than can be attained by other studies. To accemplish these ends, in the way that seemed to me most desirable, I have divided the work into three parts, arranged under the heads of Book I., II., and III

Book I. treats of Logic, both as a science and Logic. aı art ; that is, it explains the laws which govern the reasoning faculty, in the complicated processes of argumentation, and lays down the explanation rules, deduced from those laws, for conducting such processes. It being one of the leading

For what objects to show that mathematical science is the used. best subject for the development and application of the principles of logic ; and, indeed, that the science itself is but the application of those prinThe neassity ciples to the abstract quantities Number and of treating it Space, it appeared indispensable to give, in a manner best adapted to my purpose, an outline of the nature of that reasoning by means of which all inferred knowledge is acquired.

Book II.

Of what it treats.

Book II. treats of Mathematical Science. Here I have endeavored to explain the nature of the subjects with which mathematical science is conversant ; the ideas which arise in examining and contemplating those subjects; the language employed to express those ideas, and the laws of their connection. This, of course, led to a class-

Manner of treating. ification of the subjects; to an analysis of the language used, and an examination of the reasonings employed in the methods of proof.

Book ilI.
Ufilly of Book III. explains and illustrates the Utility of Utility of Mathematice. Mathematics : First, as a means of mental discipline and training ; Secondly, as a means of acquiring knowledge; and, Thirdly, as furnishing those rules of art, which make knowledge practically effective.

Having thus given the general outlines of the work, we will refer to the classes of readers for whose use it is designed, and the particular advantages and benefits which each class may receive from its perusal and study.

There are four classes of readers, who may, Four clases it is supposed, be profited, more or less, by the perusal of this work:

1st. The general reader;
2d. Professional men and students;
3d. Students of mathematics and philosophy ;
4th. Professional Teachers.

First. The general reader, who reads for im. provement, and desires to acquire knowledge, must carefully search out the import of language. He must early establish and carefully cultivate the habit of noting the connection between ideas and their signs, and also the relation of ideas to each other. Such analysis leads to attentive reading, to clear apprehension, deep reflection, and soon to generalization.

Logic considers the forms in which truth must be expressed, and lays down rules for reducing all trains of thought to such known forms. This habit of analyzing arms us with tests by which we separate argument from sophistry-truth from falsehood. The application of these prirciples,

Classes of readers.

First class
Second.

Third.
Fourth.

Logic.

Its value:

Conners

 tion betwees words and ideas.Advanliges to the general reader.

In the study in the construction of the mathematical science. of ematics. Where the relation between the sign (or language) and the thing signified (or idea expressed), is un mistakable, gives precision and accuracy, leads to right arrangement and classification, and thus prepares the mind for the reception of general knowledge.

Advantages to professional men.

Secondly. The increase of knowledge carries with it the necessity of classification. A limited number of isolated facts may be remembered, or a few simple principles applied, without tracing out their connections, or determining the places which they occupy in the science of general knowledge. But when these facts and principles are greatly multiplied, as they are in the learned

The reason.

 professions ; when the labors of preceding generations are to be examined, analyzed, compared; when new systems are to be formed, combining all that is valuable in the past with the stimulating elements of the present, there is occasion for the constant exercise of our highest facul-Knowledge reduced to order ls science. ties. Knowledge reduced to order ; that is, knowledge so classified and arranged as to be easily remembered, readily referred to, and advantageously applied, will alone suffice to sift the pure metal from the dust of ages, and fashion it for present use. Such knowledge is Science.

Masses of facts, like masses of matter, are capable of very minute subdivisions; and when we know the law of combination, they are readily divided or reunited. To know the law, in any case, is to ascend to the source; and without that knowledge the mind gropes in darkness.

It has been my aim to present such a view of Logic and Mathematical Science as would clearly indicate, to the professional student, and even to the general reader, the outlines of these subjects. Logic exhibits the general formula applicable to all kinds of argumentation, and mathematics is an application of logic to the abstract quantities Number and Space.

When the professional student shall have examined the subject, even to the extent to which it is here treated, he will be impressed with the clearness, simplicity, certainty, and generality of its principles; and will find no difficulty in making them available in classifying the facts, and examining the organic laws which characterize his particular department of knowledge.

Thirdly. Mathematical knowledge differs from every other kind of knowledge in this: it is, as it were, a web of connected principles spun out from a few abstract ideas, until it has become one of the great means of intellectual develop-

Knowledge may be reduced to its elements.

Qbjects of the work.

Logic and mathematics

Certaints of the results.

Mathematt cal knowb edge.

Its extent

Necessity or beginning at the right

 place.
How

 mathematscal science is constructed.What has been attempled.

Adrantages of examining the whole subject.

Advantages of considerIng the menInd ficalties:
ment and of practical utility. And if I am permitted to extend the figure, I may add, that the web of the spider, though perfectly simple, if we see the end and understand the way $\cdot n$ which it is put together, is yet too complicated to be unravelled, unless we begin at the right point, and observe the law of its formation. So with mathematical science. It is evolved from a few -a very few-elementary and intuitive principles: the law of its evolution is simple but exacting, and to begin at the right place and proceed in the right way, is all that is necessary to make the subject easy, interesting, and useful.

I have endeavored to point out the place of beginning, and to indicate the way to the mathematical student. I am aware that he is starting on a road where the guide-boards resemble each other, and where, for the want of careful observation, they are often mistaken; I have sought, therefore, to furnish him with the maps and guide-books of an old traveller.

By explaining with minuteness the subjects about which mathematical science is conversant, the whole field to be gone over is at once surveyed: by calling attention to the faculties of the mind which the science brings into exercise, we are better prepared to note the intellectual operations which the processes require ; and by
a knowledge of the laws of reasoning, and an acquaintance with the tests of truth, we are enabled to verify all our results. These means have been furnished in the following work, and to aid the student in classification and arrangement, diagrams have been prepared exhibiting separately and in connection all the principal parts of mathematical science. The student, therefore, who adopts the system here indicated, will find his way clearly marked out, and will recognise, from their general resemblance to the descriptions, all the guide-posts which he meets. He will be at no loss to discover the connection between the parts of his subject. Beginning with first principles and elementary combinations, and guided by simple laws, he will go forward from the exercises of Mental Arithmetic to the higher analysis of Mathematical Science on an ascent so gentle, and with a progress so steady, as scarcely to note the changes. And indeed, why should he? For all mathematical processes are alike in their nature, governed by the same laws, exercising the same faculties, and lifting the mind towards the same eminence.

Fourthly. The leading idea, in the construction of the work, has been, to afford substantial aid to the professional teacher. The nature of
of a knowtedse of the laws of reasoning.

W'hat has been done.

Advantager to the student.

Where he begins.

Orier of progress.

Unity of the subject. Advantages to the professional teacher.

Hio duties: his duties-their inherent difficulties-the per-Discourge- plexities which meet him at every step-the wanl
meats and difiluulties:

fiemoteness

 from active life.Fruits of his efforts, when seeu of sympathy and support in his hours of discouragement - (and they are many) - are circumstances which awaken a lively interest in tne hearts of all who have shared the toils, and been themselves laborers in the same vineyard. He takes his place in the schoolhouse by the roadside, and there, removed from the highways of life, spends his days in raising the feeble mind of childhood to strength-in planting aright the seeds of knowledge-in curbing the turbulence of passion - in eradicating evil and inspiring good. The fruits of his labors are seen but once in a generation. The boy must grow to manhood and the girl become a matron before he is certain that his labors have not been in vain.

Yet, to the teacher is committed the high trust of forming the intellectual, and, to a certain extent, the moral development of a people. He

The impor tance of lils labors. holds in his hands the keys of knowledge. If the first moral impressions do not spring into - life at his bidding, he is at the source of the stream, and gives direction to the current. Although himself imprisoned in the schoolhouse, his influence and his teachings affect all conditions of society, and reach over the whole hori-
zon of civilization. He impresses himself on The influences the young of the age in which he lives, and or his laboras lives again in the age which succeeds him.

All good teaching must flow from copious knowledge. The shallow fountain cannot emit a vigorous stream. In the hope of doing something tha: may be useful to the professional teacher, I have attempted a careful and full analysis of mathematical science. I have spread out, in detail, those methods which have been carefully examined and subjected to the test of long experience. If they are the right methods, they will serve as standards of teaching; for, the principles of imparting instruction are the same for all branches of knowledge.

The system which I have indicated is complete in itself. It lays open to the teacher the entire skeleton of the science-exhibits all its parts separately and in their connection. It explains a course of reasoning simple in itself, and applicable not only to every process in mathematical science, but to all processes of argumentation in every subject of knowledge.

The teacher who thus combines science with art, no longer regards Arithmetic as a mere treadmill of mechanical labor, but as a means-

Scurces of good teaching.

Objecis for which the work was undertaken.

Principles of all teaching, the samu.

Systeun.

What it presents.

What it explaina

Sclence combined with art:

The adran- and the simplest means-of teaching the art and tuges result.
tag from it the logic of mathematics. If he would accom-

Results of right instrucuon. pupils that they shall apprehend clearly, think quickly and correctly, reason justly, and above all, he must inspire them with a love of knowledge.

B O O K I.

L 0 GIC.

CHAPTERI.

REILNITIONS-OPERATIONS OF THE MIND-TERMS DEFINED.

> DEFINITIONS.
\$1. Definition is a metaphorical word, which

Definition

 literally signifies "laying down a boundary." metaphorical All definitions are of names, and of names only; but in some definitions, it is clearly apparent, that nuthing is intended except to explain the meaning of the word; while in others, besides explaining the meaning of the word, it is also implied that there exists, or may exist, a thing corresponding to the word.§2. Definitions which do not imply the exist- ordefnitions ence of things corresponding to the words defined, are those usually found in the Dictionary ${ }^{\text {uhings curre }}$ of one's own language. They explain only the
word. Some definitions explain only words:
others imply things corresponding to the words.

They explain words by equivaleats.

Deflnition of a triangle; what it implies.
meaning of the word or term, by giving some equivalent expression which may happen to be better known. Definitions which imply the existence of things corresponding to the words defined, do more than this.

For example: "A triangle is a rectilineal figure having three sides." This definition does two things:

1st. It explains the meaning of the word triangle ; and,

2d. It implies that there exists, or may exist. a rectilineal figure having three sides.
§ 3. To define a word when the definition is to imply the existence of a thing, is to selecr from all the properties of the thing those which are most simple, general, and obvious; and the properties must be very well known to us before we can decide which are the fittest for this purpose. Hence, a thing may have many properties besides those which are named in the definition of the word which stands for it. This second kind of definition is not only the best form of expressing certain conceptions, but also contributes to the development and support of new truths.

In Mathematics vames imply sciences, names imply the existence of the things
which they name; and the definitions of those names express attributes of the things; so that no correct definition whatever, of any mathematical term, can be devised, which shall not express certain attributes of the thing corresponding to the name. Every definition of this class is a tacit assumption of some proposition which
things
and express attributes

Definitions of this class are is expressed by means of the definition, and propositions. which gives to such definition its importance.
§ 5. All the reasonings in mathematics, which rest ultimately on definitions, do, in fact, rest on the intuitive inference, that things corresponding to the words defined have a conceivable existence as subjects of thought, and do or may have proximately, an actual existence.*

[^1]$2 d$ rule.

3d rule.
Reasoning resting on deflnitions;

rests on

intuitive Inferences.

Four rules

1st rule.

4th rule.

operations of the mind concerned in reasoning.

Three opera-
tions of the mind.
§6. There are three operations of the mind which are immediately concerned in reasoning. 1st. Simple apprehension ; 2d. Judgment: 3d. Reasoning or Discourse.
§ 7. Simple apprehension is the notion (or

Eimple apprehension. conception) of an object in the mind, analogous to the perception of the senses. It is either Incomplex. Incomplex or Complex. Incomplex Apprehension is of one object, or of several without any relation being perceived between them, as of a Complex triangle, a square, or a circle: Complex is of several with such a relation, as of a triangle within a circle, or a circle within a square.
§ 8. Judgment is the comparing together in the mind two of the notions (ur ideas) which are the objects of apprehension, whether complex or incomplex, and pronouncing that they agree or disagree with each other, or that one of them belongs or does not belong to, the other: for example: that a right-angled triangle and an

Judgment defined
equilateral triangle belong to the class of figures
Jndgment called triangles; or that a square is not a circle. Judgment, therefore, is either Affirmative or Negative
§ 9. Reasoning (or discourse) is the act of proceeding from certain judgments to another defined. founded upon them (or the result of them).
§ 10. Language affords the signs by which these operations of the mind are recorded, expressed, and communicated. It is also an instrument of thought, and one of the principal helps in all mental operations; and any imper-

Langunge
affords
sygus of
thought:
also, an instrument of thought. fection in the instrument, or in the mode of using it, will materially affect any result attained through its aid.
§11. Every branch of knowledge has, to a certain extent, its own appropriate language; and for a mind not previously versed in the meaning and right use of the various words and signs which constitute the language, to -attempt the study of methods of philosophizing, would be as absurd as to attempt reading before learning the alphabet.

ABSTRACTION.

§12. The faculty of abstraction is that power of the mind which enables us, in contemplating any object (or objects), to attend exclusively to
s me particular circumstance belonging to it, and quite withhold our attention from the rest. Thus,
 ung a cicse.
the process of drawing Uff. if a person in contemplating a rose should make the scent a distinct object of attention, and lay aside all thought of the form, color, \&c., he would draw off, or abstract that particular part; and therefore employ the faculty of abstraction. He would also employ the same faculty in considering whiteness, softness, virtue, existence, as entirely separate from particular objects.
§ 13. The term abstraction, is also used to denote the operation of abstracting from one or more things the particular part under consideration ; and likewise to designate the state of the mind when occupied by abstract ideas. Hence, abstraction is used in three senses:
lst. To denote a faculty or power of the mind ;

2d. To denote a process of the mind ; and,
3d. To denote a state of the mind.

GENERALIZATION.

§ 14 Generalization is the process of contemplating the agreement of several objects in certain points (that is, abstracting the circumstances of agreement, disregarding the differ-

Generaliza-tion-the process of contemplating the Hreement.

The term lostraction bew used.

Abstraction denotes a faculty, a process, and a state of mind.
ences), and giving to all and each of these objects a name applicable to them in respect to this agreement. For example; we give the name of triangle, to every rectilineal figure having three sides: thus we abstract this property from all the others (for, the triangle has three angles, may be equilateral, or scalene, or rightangled), and name the entire class from the property so abstracted. Generalization therefore necessarily implies abstraction; though abstrac. tion does not imply generalization.

TERMS-SINGULAR TERMS-COMMON TERMS.

§ 15. An act of apprehension, expressed in language, is called a Term. Proper names, or any other terms which denote each but a single individual, as "Cæsar," "the Hudson," "the Conqueror of Pompey," are called Singular Terms.

On the other hand, those terms which denote any individual of a whole class (which are formed by the process of abstraction and generalization), are called Common or general Terms. For example; quadrilateral is a common term, applicable to every rectilineal plane figure having four sides ; River, to all rivers ; and Conqueror, to all conquerors. The individuals for which a common term stands, are called its Significates. Signincatea

CLASSIFICATION.

Cuselifation
§ 16. Common terms afford the means of classification; that is, of the arrangement of objects into classes, with reference to some common and distinguishing characteristic. A collection, comprehending a number of objects, so arranged, is
pecien
 called a Genus or Species-genus being the more extensive term, and often embracing many species.

For example: animal is a genus embracing every thing which is endowed with life, the power of roluntary motion, and sensation. It has many species, such as man, beast, bird, \&ec. If we say of an animal, that it is rational, it be longs to the species man, for this is the characteristic of that species. If we say that it has wings, it belongs to the species bird, for this, in like manner, is the characteristic of the species bird.

A species may likewise be divided into classes, or subspecies; thus the species man, may be divided into the classes, male and female, and these classes may be again divided until we reach the individuals.
§17. Now, it will appear from the principles sumbere which govern this system of classification, that
the characteristic of a genus is of a more exten- Genss more sive signification, but involves fewer particu- extemive epecies lars than that of a species. In like manner, the characteristic of a species is more extensive, but less full and complete, than that of a subspecies bat sum or class, and the characteristics of these less full compere. than that of an individual.

For example; if we take as a genus the Quadrilaterals of Geometry, of which the characteristic is, that they have four sides, then every plane rectilineal figure, having four sides, will fail under this class. If, then, we divide all quadrilaterals into two species, viz. those whose opposite sides, taken two and two, are not parallel, and those whose opposite sides, taken two and two, are parallel, we shall hare in the first class, all irregular quadrilaterals, meluding the trapezoid (1 and 2) ; and in the other, the parallelogram, the rhombus, the rectangle, and the square ($3,4,5$, and 6).

If, then, we divide the first species into two subspecies or classes. we shall hare in the one, the irregular quadrilaterals (1), and in the other, the trapezoids (\because); and each of these classes, being made up of individuals having the same char-
 acteristics, are not susceptible of further division.

If we divide the second species into two classes, arranging those which hare oblique angles in the one, and those which have right
angles in the other, we shall have in the first, two varieties, viz. the common parallelogram

Epecies and classes. and the equilateral parallelogram or rhombus (3 and 4) ; and in the second, two varieties also, viz. the rectangle and the square (5 and 6).

Now, each of these six figures is a quadr-

Each indlvidual falling under the genus enjoys all the characteristics. lateral; and hence, possesses the characteristic of the genus; and each variety of both species enjoys all the characteristics of the species to which it belongs, together with some other distinguishing feature; and similarly, of all classifications.
§ 18. In special classifications, it is often not necessary to begin with the most general char-

Subaltera genus. acteristics; and then the genus with which we begin, is in fact but a species of a more extended classification, and is called a Subaltern Genus.
For example ; if we begin with the genus Parallelogram, we shall at once nave two species, viz. those parallelograms whose angles are oblique

Parallelo-

 gram.
Highest genus

and those whose angles are right angles; and in each species there will be two varieties, viz. in the first, the common parallelogram and the rhombus; and in the second, the rectangle and square.
§ 19. A genus which cannot be considered as a species, that is, which cannot be referred
to a more extended classification, is called the highest genus; and a species which cannot be considered as a genus, because it contains only individuals having the same characteristic, is called the lowest species.

NATUREOFCOMMONTERMS.

§ 20. It should be steadily kept in mind, that the "common terms" employed in classification, have not, as the names of individuals have, any real existing thing in nature corresponding to them; but that each is merely a name denoting a certain inadequate notion which our minds have formed of an individual. But as this name does not include any thing wherein that individual differs from others of the same class, it is applicable equally well to all or any of them. Thus, quadrilateral denotes no real thing, distinct from each individual, but merely any rectilineal figure of four sides, viewed inadequately : that is, after abstracting and omitting all that is peculiar to each individual of the class. By this means, a common term becomes applicable applicable to many alike to any one of several individuals, or, taken indirldaala in the plural, to several individuals together.

Much needless difficulty has been raised respecting the results of this process: many hav-

Needless lifficulty. ing contended, and perhaps more having taken

Highest genus.

Lowest species

A commin term has ro real thino corresponding:
is an inadequate notion ${ }^{\text {- }}$
does not include ams thing in which individuuls differ:

Diffculty in the interpresation of common lerms.

No one real thing corresponding to each.
it for granted, that there must be some really existing thing corresponding to each of those common terms, and of which such term is the name, standing for and representing it. For example; since there is a really existing thing corresponding to and signified by the proper and singular name " Ætna," it has been supposed that the common term "Mountain" must have some one really existing thing corresponding to it, and of course distinct from each individual mountain, yet existing in each, since the term, being common, is applicable, separately, to every one of them.

The fact is, the notion expressed by a common term is merely an inadequate (or incomplete)
Merely an inadequate notion partially designating the thing. notion of an individual; and from the very circumstance of its inadequacy, it will apply equally well to any one of several individuals. For example; if I omit the mention and the consideration of every circumstance which distinguishes Etna from any other mountain, I then form a notion, that inadequately designates Ætna. This
"Mountain"
is applicable to all mountains. notion is expressed by the common term "mountain," which does not imply any of the peculiarities of the mountain Ætna, and is equally applicable to any one of several individuals.

In regard to classification, we should also bear in mind, that we may fix, arbitrarily, on the
characteristic which we choose to abstract and consider as the basis of our classification, disregarding all the rest: so that the same individual may be referred to any of several different species, and the same species to several genera, as suits our purpose.

SCIENCE.

§ 21. Science, in its popular signification, means knowledge.* In a more restricted sense, it means knowledge reduced to order; that is, knowledge so classified and arranged as to be easily remembered, readily referred to, and advantageously applied. In a more strict and technical sense, it has another signification.
"Every thing in nature, as well in the inanimate as in the animated world, happens or is done according to rules, though we do not always know them. Water falls according to the laws of gravitation, and the motion of walking is performed by animals according to rules. The fish in the water, the bird in the air, move according to rules. There is nowhere any want of rule. When we think we find that want, we can only say that, in this case, the rules are unknown to us." \dagger

Assuming that all the phenomena of nature

Views of Kqut.

Has a
techuical
technical
signification

Science in its general sense.

May fix on attributes arbitrarily for classification

Science

in a technical sense deflned: is an analysis of the laws cf uature.

Arh spplication of acience,
and presupposes knuwledge. Many things must be known before one can be done. are consequences of general and immutable laws, we may define Science to be the analysis of those laws,-comprehending not only the connected processes of experiment and reasoning which make them known to man, but also those processes of reasoning which make known their individual and concurrent operation in the development of individual phenomena.

ART.

§ 22. Art is the application of knowledge to practice. Science is conversant about knowledge: Art is the use or application of knowledge, and is conversant about works. Science has knowledge for its object : Art has knowledge for its guide. A principle of science, when applied, becomes a rule of art. The developments of science increase knowledge: the applications of art add to works. Art, necessarily, presupposes knowledge : art, in any but its infant state, presupposes scientific knowledge ; and if every art does not bear the name of the science on which it rests, it is only because several sciences are often necessary to form the groundwork of a single art. Such is the complication of hu. man affairs, that to enable one thing to be done, it is often requisite to know the nature and prop erties of manv things.

CHAPTER II.

gOURCES AND MEANS OF KNOWLEDGE-INDUCTION

KNOWLEGDE.

§ 23 . Knowledge is a clear and certain conertion of that which is true, and implies threar conception of that which is true, and implies three things:

1st. Firm belief; 2d. Of what is true; and, 3d. On sufficient grounds.

If any one, for example, is in doubt respecting one of Legendre's Demonstrations, he cannot be said to know the proposition proved by it. If, again, he is fully convinced of any thing that is not true, he is mistaken in supposing himself to know it ; and lastly, if two persons are each fully

Knowledge ception of what is true Implies1st. Firm belier;
2d. Or what is true; 3d. On sufficient grounds. confident, one that the moon is inhabited, and the other that it is not (though one of these opinions must be true), neither of them could properly be said to know the truth, since he cannot have sufficient proof of it.

FACTS AND TRUTHS.

Knowledge is of facts and truths.
§ 24. Our knowledge is of two kinds : of facts and truths. A fact is any thing that has been or is. That the sun rose yesterday, is a fact: that he gives light to-day, is a fact. That water is fluid and stone solid, are facts. We derive our knowledge of facts through the medium of the senses.

Trutb an accordance with what bas been, is, or shall be. Two methods of ascertaining $1 t$.

Truth is an exact accordance with what has been, is, or shall be. There are two methods of ascertaining truth :

1st. By comparing known facts with each other; and,
2dly. By comparing known truths with each other.

Hence, truths are inferences either from facts or other truths, made by a mental process called Reasoning.
§25. Seeing, then, that facts and truths are the

Facts and truths, the elements of our knowledge. elements of all our knowledge, and that knowledge itself is but their clear apprehension, their firm belief, and a distinct conception of their relations to each other, our main inquiry is, How are we to attain unto these facts and truths, which are the foundations of knowledge?

1st. Our knowledge of facts is derived through
the medium of our senses, by observation, experiment,* and experience. We see the tree, and perceive that it is shaken by the wind, and note krive at a the fact that it is in motion. We decompose water and find its elements; and hence, learn from experiment the fact, that it is not a simple substance. We experience the vicissitudes of heat and cold; and thus learn from experience that the temperature is not uniform.
The ascertainment of facts, in any of the ways above indicated, does not point out any connec- This does not tion between them. It merely exhibits them to the mind as separate or isolated; that is, each as standing for a determinate thing, whether simple or compound. The term facts, in the sense in which we shall use it, will designate facts of this class only. If the facts so ascertained have such connections with each other, that additional facts can be inferred from them, that inference is pointed out by the reasoning process, which is carried on, in all cases, by comparison.
2dly. A result obtained by comparing facts, we Trutb, formd have designated by the term Truth. Truths, by comparing therefore, are inferences from facts; and every

[^2]and is inferred from them.

How truths are inferred from facts by the reasoning process.
truth has reference to all the singular facts from which it is inferred. Truths, therefore, are results deduced from facts, or from classes of facts. Such results, when obtained, appertain to all facts of the same class. Facts make a genus: truths, a species; with the characteristic, that they become known to us by inference or reasoning.
§ 26. How, then, are truths to be inferred from facts by the reasoning process? There are two cases.

1st. When the instances are so few and simple that the mind can contemplate all the facts on which the induction rests, and to which it refers, and can make the induction without the aid of other facts ; and,

2dly. When the facts, being numerous, complicated, and remote, are brought to mind only by processes of investigation.

INTUITIVETRUTH.

§27. Truths which become known by con-

Intuitive or selferident truths. sidering all the facts on which they depend, and which are inferred the moment the facts are apprehended, are the subjects of Intuition, and are called Intuitive or Self-evident Truths. The

Intuition defined.
term Intuition is strictly applicable only to that mode of contemplation in which we lonk at
facts, or classes of facts, and apprehend the relations of those facts at the same time, and by the same act by which we apprehend the facts themselves. Hence, intuitive or self-evi- How intuitive dent truths are those which are conceived in trutbs the mind immediately; that is which are per the mind fectly conceived by a single process of.induction, the moment the facts on which they depend are apprehended, without the intelvention of other ideas. They are necessary consequences of conceptions respecting which they are asserted. The axioms of Geometry afford the simplest and most unmistakable class of such truths.
"A whole is equal to the sum of all its parts," is an intuitive or self-evident truth, inferred from facts previously learned. For example; having learned from experience and through the senses what a whole is, and, from experiment, the fact that it may be divided into parts, the mind perceives the relation between the whole and the sum of the parts, viz. that they are equal; and then, by the reasoning process, infers that the Howinferrec. same will be true of every other thing; and hence, pronounces the general truth, that "a whole is equal to the sum of all its parts." Here all the facts from which the induction is drawn, are presented to the mind, and the induction are presented is made without the aid of other facts; hence,

All the exiums are deduced in the same
way.

These axioms are general propositions.

Difference between them and other propositions, which require diiigent research.
it is an intuitive or self-evident truth. All the other axioms of Geometry are deduced from premises and by processes of inference, entirely similar. We would not call these experimental truths, for they are not alone the results of experiment or experience. ${ }^{\bullet}$ Experience and experiment furnish the requisite information, but the reasoning power evolves the general truth.
"When we say, the equals of equals are equal, we mentally make comparisons in equal spaces, equal times, \&c.; so that these axioms, however self-evident, are still general propositions: so far of the inductive kind, that, independently of experience, they would not present themselves to the mind. The only difference between these and axioms obtained from extensive induction is this: that, in raising the axioms of Geometry, the instances offer themselves spontaneously, and without the trouble of search, and are few and simple: in raising those of nature, they are infinitely numerous, complicated, and remote; so that the most diligent research and the utmost acuteness are required to unravel their web, and place their meaning in evidence."*

[^3]THUTHS, OR LOGICAL TRUTHS.
§28. Truths inferred from facts, by the process of generalization, when the instances do not offer themselves spontaneously to the mind, but require search and acuteness to discover and point out their connections, and all truths inferred from truths, might be called Logical Truths. But as we have given the name of intuitive or selfevident truths to all inferences in which all the facts were contemplated, we shall designate all others by the simple term, Truths.

It might appear of little consequence to distinguish the processes of reasoning by which truths are inferred from facts, from those in which we deduce truths from other truths; but this dif. ference in the premises, though seemingly slight, is nevertheless very important, and divides the subject of logic, as we shall presently see, into two distinct and very different branches.
LOGIC.
§29. Logic takes note of and decides upon Logic the sufficiency of the evidence by which truths notes the sufficiency al are established. Our assent to the conclusion evidence. being grounded on the truth of the premises, we never could arrive at any knowledge by reasoning, unless something were known antecedently to all reasoning. It is the province of its prortooes

Furnishes the tests of truth.

Logic to furnish the tests by which all truths that are not intuitive may be inferred from the premises. It has nothing to do with ascertaining facts, nor with any proposition which claims to be believed on its own intrinsic evidence; that is, without evidence, in the proper sense of the word. It has nothing to do with the original data, or ultimate premises of our knowledge; with their number or nature, the mode in which they are obtained, or the tests by which they are distinguished. But, so far as our knowledge is founded on truths made such by evidence,
but supplies all tests for general propositions. that is, derived from facts or other truths previously known, whether those truths be particular truths, or general propositions, it is the province of Logic to supply the tests for ascertaining the validity of such evidence, and whether or not a belief founded on it would be well grounded. And since by far the greatest portion of The grearest our knowledge, whether of particular or general portion of our knowledge comes from Inference. truths, is avowedly matter of inference, nearly the whole, not only of science, but of human conduct, is amenable to the authority of logic.

INDUCTION.

§ 30. That part of logic which infers truths from facts, is called Induction. Inductive reasoning is the application of the reasoning process to a given number of facts, for the purpose of determining if what has been ascertained respecting one or more of the individuals is true of the whole class. Hence, Induction is not the mere sum of the facts, but a conclusion lrawn from them.

The logic of Induction consists in classing the facts and stating the inference in such a manner, that the evidence of the inference shall be most manifest.
§ 31. Induction, as above defined, is a process of inference. It proceeds from the known to the unknown; and any operation involving no inference, any process in which the conclusion is a mere fact, and not a truth, does not fall within the meaning of the term. The conclusion must be broader than the premises. The premises are facts: the conclusion must be a truth.

Induction, therefore, is a process of generalization. It is that operation of the mind by which we infer that what we know to be true

Induction proceeds from the known w the unknown.

The concluaion broader than the premises.
in which we cunclude, that what is true under particular circumstances will be true universsally.

1nduction presupposes uccurate and necessary obwervations.
in a particular case or cases, will be true in all cases which resemble the former in certain assignable respects. In other words, Induction is the process by which we conclude that what is true of certain individuals of a class is true of the whole class; or that what is true at certain times, will be true, under similar circum. stances, at all times.
§ 32. Induction always presupposes, not only that the necessary observations are made with the necessary accuracy, but also that the results of these observations are, so far as practicable, connected together by general descriptions: enabling the mind to represent to itself as wholes, whatever phenomena are capable of being so represented.

To suppose, however, that nothing more is

Slore is necussary than to cunnet the observations we must mfer from them. required from the conception than that it should serve to connect the observations, would be to substitute hypothesis for theory, and imagination for proof. The connecting link must be some character which really exists in the facts themselves, and which would manifest itself therein, if the condition could be realized which our organs of sense require.

For example ; Blakewell, a celebrated English cattle-breeder, observed, in a great number of
individual beasts, a tendency to fatten readily, and in a great number of others the absence of this constitution : in every individual of the former description, he observed a certain peculiar make, though they differed widely in size, color, \&c. Those of the latter description differed no less in various points, but agreed in being of a different make from the others. These facts were his data; from which, combining them with the general principle, that nature is steady and uniform in her proceedings, he logically drew the conclusion that beasts of the specified make have universally a peculiar tendency to fattening.

The principal difficulty in this case consisted in making the observations, and so collating and combining them as to abstract from each of a multitude of cases, differing widely in many respects, the circumstances in which they all agreed. But neither the making of the observations, nor their combination, nor the abstraction, nor the judgment employed in these processes, constituted the induction, though they were all preparatory to it. The Induction consisted in the generalization; that is, in inferring from all the data, that certain circumstances would be. found in the whole class.

The mind of Newton was led to the universal law, that all bodies attract each other by forces

Example of Blakewell, the English cattle breeden.

How be ascertained the facts: why he inferred.

In what the difficulty consister.

If what the induction cunsisted.

Newton's inference of the law of universal gravitation.

How he observed frets and their sonnections.
varying directly as their masses, and inversely as the squares of their distances, by Induction. He saw an apple falling from the tree: a mere fact ; and asked himself the cause ; that is, if any inference could be drawn from that fact, which should point out an invariable antecedent condition. This led him to note other facts, to prosecute experiments, to observe the heavenly bodies, until from many facts, and their connections with each other, he arrived at the conclusion, that the motions of the heavenly bodies were governed by general laws, applicable to all matter, that the stone whirled in the sling and the earth rolling forward through space, are governed in their motions by one and the same law. He

The use which he made of exact science.

What was the result. then brought the exact sciences to his aid, and demonstrated that this law accounted for all the phenomena, and harmonized the results of all observations. Thus, it was ascertained that the laws which regulate the motions of the hearenly bodies, as they circle the heavens, also guide the feather, as it is wafted along on the passing breeze.

The ways of ascertaining facts are known:
§33. We have already indicated the ways in which the facts are ascertained from which the inferences are drawn. But when an inference can be drawn : how many facts must enter into
the premises; what their exact nature must be; butwn and what their relations to each other, and to do not know certainly, in all cases, the inferences which flow from them; are questions which do not admit of definite answers. Although no general law has yet been discovered connecting all facts with truths, yet all the uniformities which exist in the succession of phenomena, and most of those which prevail in their coexistence, are either themselves laws of causation or consequences resulting and corollaries capable of being deduced from, such laws. It being the main business of Induction to determine the effects of every cause, and the causes of all effects, if we had for all such processes general and certain laws, we could determine, in all cases, what causes are correctly assigned to what effects, and what effects to what causes, and we should thus be virtually acquainted with the whole course of nature. So far, then, as we can trace, with certainty, the connection between cause and effect, or between effects and their causes, to that extent Induction is a science. When this cannot be done, the conclusions must be, to some extent, conjectural.

CHAPTER III.

```
dEdUCTION-NATURE OF THE SYLLOGISM-ITS USES AND APPLICATIONS.
```


DEDUCTION.

§ 34. We have seen that all processes of
Inductive Reasoning, in which the premises are particular processes of reasoning. facts, and the conclusions general truths, are called Inductions. All processes of Reasoning, in which the premises are general truths and the

Deductive processes.

Deduction defined.

Deductive Cormula. conclusions particular truths, are called Deductions. Hence, a deduction is the process of reasoning by which a particular truth is inferred from other truths which are known or admitted. The formula for all deductions is found in the Syllogism, the parts, nature, and uses of which we shall now proceed to explain.

PROPOSITIONS.

Proposition, judgment in words:
§ 35. A proposition is a judgment expressed in words. Hence, a proposition is defined $\log _{1}$ cally, "A sentence indicative:" affirming or

* Section 30.
denying; therefore, it must not be ambiguous, must not be for that which has more than one meaning is $\begin{gathered}\text { ambursuous; } \\ \text { nor inper }\end{gathered}$ in reality several propositions; nor imperfect, grammaticat. nor ungrammatical, for such expressions have no meaning at all.
§ 36. Whatever can be an object of beliet, or even of disbelief, must, when put into words, assume the form of a proposition. All truth and all error lie in propositions. What we call a truth, is simply a true proposition; and errors Its nature,are false propositions. To know the import of all propositions, would be to know all questions
which can be raised, and all matters which are susceptible of being either believed or disbe-

Embraces all truth and all error lieved. Since, then, the objects of all belief and all inquiry express themselves in propositions, a sufficient scrutiny of propositions and their varieties will apprize us of what questions mankind have actually asked themselves, and what, in the nature of answers to those questions, they have actually thought they had grounds to believe.
§ 37. The first glance at a proposition shows that it is formed by putting together two names. Thus, in the proposition, "Gold is yellow," the property yellow is affirmed of the substance gold. In the proposition, "Franklin was not born in
tion of
propositions
embraces all questions and all knowedge.

A proposition is formed by putting two names together.

England," the fact expressed by the words born in England is denied of the man Franklin.

A proposition has three parts: Subject, Predicate, and Copula
§ 38. Every proposition consists of three parts: the Subject, the Predicate, and the Copula. The subject is the name denoting the person or thing of which something is affirmed or denied : the predicate is that which is affirmed or denied of the subject; and these two are called the terms (or extremes), because, logically, the subject is placed first, and the predicate last. The copula, in the middle, indicates the act of judgment, and is the sign denoting that there is an affirmation or denial. Thus, in the proposi-

Subject defined. tion, "The earth is round;" the subject is the words "the earth," being that of which something is affirmed : the predicate, is the word round, which denotes the quality affirmed, or (as the
Prellicate. phrase is) predicated: the word is, which serves as a connecting mark between the subject and the predicate, to show that one of them is affirmed of the other, is called the Copula. The

Copula must be copula must be either is, or is not, the substan-- or to xor. tive verb being the only verb recognised by

All verbs resolvable mus "to be." Logic. All other verbs are resolvable, by means of the verb "to be," and a participle or adjective. For example:
" The Romans conquered :"
the word "conquered" is both copula and predicate, being equivalent to "were victorious," of the Hence, we might write,
"The Romans were victorious,"
in which were is the copula, and victorious the predicate.
§ 39. A proposition being a portion of discourse, in which something is affirmed or denied of something, all propositions may be divided into affirmative and negative. An affirmative proposition is that in which the predicate is affirmed of the subject; as, "Cæsar is dead." A negative proposition is that in which the predicate is denied of the subject ; as, "Cæsar is not dead." The copula, in this last species of proposition, In the lnesh, consists of the words "is not," which is the the copula is sign of negation; "rs" being the sign of affirmation.

SYLLOGISM.

§ 40. A syllogism is a form of stating the connection which may exist, for the purpose of consists of reasoning, between three propositions. Hence, to a legitimate syllogism, it is essential that there should be three, and only three, proposi-

Twu are almitted.
and the third tions. Of these, two are admitted to be true,
is proved from them. and are called the premises : the third is proved from these two, and is called the conclusion. For exampie :

Example.

Major Term difined.
" All tyrants are detestable :
Cæsar was a tyrant;
Therefore, Cæsar was detestable."

Now, if the first two propositions be admitted, the third, or conclusion, necessarily follows from them, and it is proved that Cesar was detestable.

Of the two terms of the conclusion, the Predicate (detestable) is called the major term, and the Subject (Cæsar) the minor term; and these two terms, together with the term "tyrant," make up the three propositions of the syllogism,
Minor Term. -each term being used twice. Hence, every syllogism has three, and only three, different terms.

Major Premise defined.

Minor Premise.

The premise, into which the Predicate of the conclusion enters, is called the major premise; the other is called the minor premise, and contains the Subject of the conclusion; and the other term, common to the two premises, and with which both the terms of the conclusion were separately compared, before they were compared
midde Term. with each other, is called the middle term. In the syllogism above. "detestable" (in the con-
clusion) is the major term, and "Cæsar" the minor term: hence,

> "All tyrants are detestable,"
is the major premise, and
"Cæsar was a tyrant,"
the minor premise, and "iyrant" the middle term.
§ 41. The syllogism, therefore, is a mere formula for ascertaining what may, or what may not, be predicated of a subject. It accomplishes this end by means of two propositions, viz. by comparing the given predicate of the first (a Howapplied. Major Premise), and the given subject of the second (a Minor Premise), respectively with one and the same third term (called the middle term), and thus-under certain conditions, or laws of the syllogism-to be hereafter stated-eliciting the truth (conclusion) that the given predicate must be predicated of that subject. It will be seen that the Major Premise always declares, Use of the Major premise in a general way, such a relation between the Major Term and the Middle Term ; and the Mi- of the Minnr nor Premise declares, in a more particular way, such a relation between the Minor Term and the Middle Term, as that, in the Conclusion,

Of the Mlddle Term the Minor Term must be put under the Major Term ; or in other words, that the Major Term must be predicated of the Minor Term.

ANALYTICAL OUTLINE OF DEDUCTION.

Reasoning defined.
§ 42. In every instance in which we reason, in the strict sense of the word, that is, make use of arguments, whether for the sake of refuting an adversary, or of conveying instruction, or of satisfying our own minds on any point, whatever may be the subject we are engaged on, a certain process takes place in the mind, which is one
The process, and the same in all cases (provided it be corin all cases, the same. rectly conducted), whether we use the inductive process or the deductive formulas.

Of course it cannot be supposed that every
Every one one is even conscious of this process in his own not conscions of the process.

The same for every other process. mind; much less, is competent to explain the principles on which it proceeds. This indeed is, and cannot but be, the case with every other process respecting which any system has been formed ; the practice not only may exist independently of the theory, but must have preceded the theory. There must have been Language before a system of Grammar could be devised; and musical compositions, previous to the science of Music. This, by the way, serves to expose the futility of the popular objection against Logic ; viz. that men may reason very well who know nothing of it. The parallel instances adduced show that such an objection may be urged
in many other cases, where its absurdity would be obvious; and that there is no ground for de-

Logic of value. ciding thence, either that the system has no tendency to improve practice, or that even if it had not, it might not still be a dignified and interesting pursuit.
§ 43. One of the chief impediments to the attainment of a just view of the nature and object of Logic, is the not fully understanding, or not sufficiently keeping in mind the sameness of the reasoning process in all cases. If, as the ordinary mode of speaking would seem to indicate, mathematical reasoning, and theological, and metaphysical, and political, \&c., were essentially different from each other, that is, different kinds of reasoning, it would follow, that supposing there could be at all any such science as we have described Logic, there must be so many different species or at least different branches of Logic. And such is perhaps the most prevailing notion. Nor is this much to be wondered at ; since it is evident to all, that some men converse and write, in an argumentative way, very justly on one subject, and very erroneously on another, in which again others excel, who fail in the former.

This error may be at once illustrated and re-

All kinds of reasoning arn alike in principla
Sameness of the reasoning process should be kept in mind.

The reason of moved, by considering the parallel instance of
the error illustruted by example, which shows that the rea- the nature of the objects whose numbers are soning process is always the same. Arithmetic; in which every one is aware that the process of a calculation is not affected by before us; but that, for example, the multiplication of a number is the very same operation, whether it be a number of men, of miles, or of pounds; though, nevertheless, persons may perhaps be found who are accurate in the results of their calculations relative to natural philosophy, and incorrect in those of political economy, from their different degrees of skill in the subjects of these two sciences; not surely because there are different arts of arithmetic ap plicable to each of these respectively.
§ 44. Others again, who are aware that tne

Bome view Logic as a peculiar method of reasoning: simple system of Logic may be applied to all subjects whatever, are yet disposed to view it as a peculiar method of reasoning, and not, as it is, a method of unfolding and analyzing our reasoning: whence many have beer. led to talk of comparing Syllogistic reasoning with Moral reasoning; taking it for granted that it is pos. sible to reason correctly without reasoning logithe the only cally; which is, in fact, as great a blunder as it method of reasoning wrrectly: any one were to mistake grammar for a peculiar language, and to suppose it possible to speak
correctly without speaking grammatically. They have in short, considered Logic as an art of reasoning; whereas (so far as it is an art) it is the art of reasoning; the logician's object being, not it lass down to lay down principles by which one may reason, rules, not to lay down principles by which one may reason, but by which all must reason, even though they are not distinctly aware of them:-to lay down rules, not which may be followed with advantage, but which cannot possibly be departed from in sound reasoning. These misapprehen- Misappresions and objections being such as lie on the very threshold of the subject, it would have been hensionsand objections noticed. hardly possible, without noticing them, to convey any just notion of the nature and design of the logical system.
§45. Supposing it then to have been per- operation of ceived that the operation of reasoning is in all cases the same, the analysis of that operation reasoning should be analyzed. could not fail to strike the mind as an interesting matter of inquiry. And moreover, since (apparent) arguments, which are unsound and inconclusive, are so often employed, either from error or design ; and since even those who are not misled by these fallacies, are so often at a loss to detect and expose them in a manner satisfactory to others, or even to themselves; it could not but appear desirable to lay down some gen-

Because such analysis is necessary in furnish the
rules for the eral rules of reasoning, applicable to all cases ;
detection of etror and the discovery of truth. by which a person might be enabled the more readily and clearly to state the grounds of his own conviction, or of his objection to the arguments of an opponent; instead of arguing at random, without any fixed and acknowledged principles to guide his procedure. Such rules

Such rules are analogous to the rules of Arithmetic. would be analogous to those of Arithmetic, which obviate the tediousness and uncertainty of calculations in the head; wherein, after much labor, different persons might arrive at different results, without any of them being able distinctly to point out the error of the rest. A system of such rules, it is obvious, must, instead of deserv-
They bring ing to be called the art of wrangling, be more the parties, in argument to an issue. justly characterized as the "art of cutting short wrangling," by bringing the parties to issue at once, if not to agreement; and thus saving a waste of ingenuity.

Every conclusion is deduced from two propositions, called Premises. If one premise is supprossed, it is revertheless understond,
§ 46. In pursuing the supposed investigation, it will be found that in all deductive processes every conclusion is deduced, in reality, from two other propositions (thence called Premises) ; for though one of these may be, and commonly is, suppressed, it must nevertheless be understood as admitted; as may easily be made evident by supposing the denial of the suppressed premise.
which will at once invalidate the argument. For example; in the following syllogism :
"Whatever exhibits marks of design had an intelligent author:
The world exhibits marks of design ;
Therefore, the world had an intelligent author :"
if any one from perceiving that "the world exhibits marks of design," infers that "it must have had an intelligent author," though he may not be aware in his own mind of the existence of any other premise, he will readily understand. if it be denied that "whatever exhibits marks of design must have had an intelligent author," that the affirmative of that proposition is necessary to the validity of the argument.
§47. When one of the premises is suppressed (which for brevity's sake it usually is), the argument is called an Enthymeme. For example :
"The world exhibits marks of design,
Therefore the world had an intelligent author,"
is an Enthymeme. And it may be worth while to remark, that, when the argument is in this state, the objections of an opponent are (or rather appear to be) of two kinds, viz. either objections to the assertion itself, or objections to its force as an argument. For example: in the above Exampla instance, an atheist may be conceived either de-
and is necessury to the argumenh, though one may not be aware of it.

Both premlses must be true, if the argument is sound :
nying that the world does exhibit marks of design, or denying that it follows from thence that it had an intelligent author. Now it is important to keep in mind that the only difference in the two cases is, that in the one the expressed premise is denied, in the other the suppressed;
and when both are true, the conclusion follows. for the force as an argument of either premise depends on the other premise : if both be admitted, the conclusion legitimately connected with them carnot be denied.
§48. It is evidently immaterial to the argument whether the conclusion be placed first or

Premise placed after the conclusion is called the Reason.

Ilative conjunction.

Causes of error and perplexity.

Different - gniflcations of the last; but it may be proper to remark, that a premise placed after its conclusion is called the Reason of it, and is introduced by one of those conjunctions which are called causal, viz. "since," "because," \&c., which may indeed be employed to designate a premise, whether it come first or last. The illative conjunctions "therefore," \&c., designate the conclusion.

It is a circumstance which often occasions error and perplexity, that both these classes of conjunctions have also another signification, being employed to denote, respectively, Cause and Effect, as well as Premise and Conclusion. For example: if I say, "this ground is rich, because the trees on it are flourishing;" or. "the trees are
flourishing, and therefore the soil must be rich;" I employ these conjunctions to denote the connection of Premise and Conclusion; for it is plain that the luxuriance of the trees is not the cause of the soil's fertility, but only the cause of my knowing it. If again I say, "the trees flourish, because the ground is rich;" or "the ground is rich, and therefore the trees flourish,'" I am using the very same conjunctions to denote the connection of cause and effect; for in this case, the luxuriance of the trees being evident to the eye, would hardly need to be proved, but might need to be accounted for. There are, however, many cases, in which the cause is employed to prove the existence of its effect ; especially in arguments relating to future events; as, for example, when from favorable weather any one argues that the crops are likely to be abundant, the cause and the reason, in that case, coincide; and this contributes to their being so often confounded together in other cases.
§ 49. In an argument, such as the example above given, it is, as has been said, impossible for any one, who admits both premises, to avoid admitting the conclusion. But there will be frequently an apparent connection of premises with a conclusion which does not in reality follow

Apparent from them, though to the inattentive or unskilful

Sonnection of premlses and conclusion must not be relied on.

General rules for argumentation necessary.

Example of an imperfect argument. the argument may appear to be valid; and there are many other cases in which a doubt may exist whether the argument be valid or not ; that is, whether it be possible or not to admit the prem. ises and yet deny the conclusion.
§ 50. It is of the highest importance, therefore, to lay down some regular form to which every valid argument may be reduced, and to devise a rule which shall show the validity of every argument in that form, and consequently the unsoundness of any apparent argument which cannot be reduced to it. For example ; if such an argument as this be proposed:
"Every rational agent is accountable : Brutes are not rational agents; Therefore they are not accountable;"
or again:

2 d Example.

Dimenty of detecting the enor.
"All wise legislators suit their laws to the genius of their nation ;
Solon did this; therefore he was a wise legislator:"
there are some, perhaps, who would not perceive any fallacy in such arguments, especially if enveloped in a cloud of words; and still more, when the conclusion is true, or (which comes to the same point) if they are disposed to believe it ; and others might perceive indeed, but might
be at a loss to explain, the fallacy. Now these (apparent) arguments exactly correspond. re. spectively, with the following, the absurdity of the conclusions from which is manifest :
" Every horse is an animal :
Sheep are not horses ;
Therefore, they are not animals."
And:
" All vegetables grow;
An animal grows;
Therefore, it is a vegetable."

These last examples, I have saia, correspond exactly (considered as arguments) with the former; the question respecting the validity of an argument being, not whether the conclusion be true, but whether it follows from the premises adduced. This mode of exposing a fallacy, by bringing forward a similar one whose conclusion is obviously abşurd, is often, and very advantageously, resorted to in addressing those who are ignorant of Logical rules; but to lay down such rules, and employ them as a test, is evi- Tolay down dently a safer and more compendious, as well rules is the best way as a more philosophical mode of proceeding. To attain these, it would plainly be necessary to analyze some clear and valid arguments, and to observe in what their conclusiveness consists.
§51. Let us suppose, then, such an examination to be made of the syllogism above mentioned:

Example of a perfect syllogism.

What is assumed in the first premise.

In the second premise. What we may infer.

Syllogism with a negative conclusion.
"Whatever exhibits marks of design had an intelligent author ; The world exhibits marks of design ;
Therefore, the world had an intelligent author."
In the first of these premises we find it assumed universally of the class of "things which exhibit marks of design," that they had an intelligent author; and in the other premise, "the world" is referred to that class as comprehended in it: now it is evident that whatever is said of the whole of a class, may be said of any thing comprehended in that class; so that we are thus authorized to say of the world, that "it had an intelligent author."

Again, if we examine a syllogism with a negative conclusion, as, for example,
> "Nothing which exhibits marks of design could have been produced by chance ;
> The world exhibits, \&c. ;
> Therefore, the world could not have been produced by chance,"

The process of reasoning the same.
the process of reasoning will be found to be the same; since it is evident that whatever is denied universally of any class may be denied of any thing that is comprehended in that class.
§ 52. On further examination, it will be found that all valid arguments whatever, which are based on admitted premises, may be easily reduced to such a form as that of the foregoing syllogisms; and that consequently the principle on which they are constructed is that of the formula of the syllogism. So elliptical, indeed, is the ordinary mode of expression, even of those who are considered as prolix writers, that is, so much is implied and left to be understood in the course of argument, in comparison of what is actually stated (most men being impatient even, to excess, of any appearance of unnecessary and tedious formality of statement), that a single sentence will often be found, though perhaps considered as a single argument, to contain, compressed into a short compass, a chain of several distinct arguments. But if each of these be fully developed, and the whole of what the author intended to imply be stated expressly, it will be found that all the steps, even of the longest and most complex train of reasoning, may be reduced into the above form.
§ 53. It is a mistake to imagine that Aristotle and other logicians meant to propose that this prolix form of unfolding arguments snould universally supersede, in argumentative discourses.

Al: valid arguments reducible to the syllogistic form.

Ordlasy mode or expressinz arguments elliptical.

But when fully developed, they may all be reduced into the above form.

Aristotle did not mean that every argument ahould be
thrown into the common forms of expression ; and that "to the form of a sylogism. reason logically," means, to state all arguments at full length in the syllogistic form ; and Aristotle has even been charged with inconsistency for not doing so. It has been said that he "argues like a rational creature, and never attempts

That form is merely a test of truth. to bring his own system into practice." As well might a chemist be charged with inconsistency for making use of any of the compound substances that are commonly employed, without previously analyzing and resolving them into

Analogy to the chemist. their simple elements; as well might it be imagined that, to speak grammatically, means, to parse every sentence we utter. The chemist (to pursue the illustration) keeps by him his tests and his method of analysis, to be employed when

The anslogy continued. any substance is offered to his notice, the composition of which has not been ascertained, or in which adulteration is suspected. Now a fal-
To what a lacy may aptly be compared to some adulterated

- fallacy may be compared. compound ; "it consists of an ingenious mixture of tiuth and falsehood, so entangled, so intimately blended, that the falsehood is (in the chemical phrase) held in solution: one drop of sound logic

How detect-

 is that test which immediately disunites then, ed. makes the foreign substance visible, and precipitates it to the bottom."
ARISTOTLE'S DICTUM.

§ 54. But to resume the investigation of the principles of reasoning : the maxim resulting from

Form of every real argument. the examination of a syllogism in the foregoing form, and of the application of which, every valid deduction is in reality an instance, is this :
" That whatever is predicated (that is, affirmed or denied) universally, of any class of things, may be predicated, in like manner (viz. affirmed or denied), of any thing comprehended in that class."

This is the principle commonly called the dictum de omni et nullo, for the indication of which we are indebted to Aristotle, and which is the keystone of his whole logical system. It is remarkable that some, otherwise judicious writers, should have been so carried away by their zeal against that philosopher, as to speak with scorn and ridicule of this principle, on account of its obviousness and simplicity; though they would probably perceive at once in any other case, that it is the greatest triumph of philosophy to refer many, and seemingly very various phenomena to one, or a very few, simple principles; and that the more simple and evident such a principle is, provided it be truly applicable to all the cases in question, the

No solid ob- greater is its value and scientific beauty. If, juction to the priuciple ever urged.

What has been taken for granted.

Syllogism not a distinct kind of argument; but a form applicable to all cases. indeed, any principle be regarded as not thus applicable, that is an objection to it of a different kind. Such an objection against Aristotle's dictum, no one has ever attempted to establish by any kind of proof; but it has often been taken for granted; it being (as has been stated) very commonly supposed, without examination, that the syllogism is a distinct kind of argument, and that the rules of it accordingly do not apply, nor were intended to apply, to all reasoning whatever, where the premises are granted or known.

Objection: that the syllugism was intended to make a demonstration nlainer:
§55. One objection against the dictum of Aristotle it may be worth while to notice briefly, for the sake of setting in a clearer light the real character and object of that principle. The application of the principle being, as has been seen, to a regular and conclusive syllogism, it has been urged that the dictum was intended to prove and make evident the conclusiveness of such a syllogism; and that it is unphilosophical to attempt giving a demonstration of a demonstration. And certainly the charge
to increase the certainty of a conclusion. would be just, if we could imagine the logician's object to be, to increase the certainty of a conclusion, which we are supposed to have already arrived at by the clearest possible mode
of proof. But it is very strange that such an This view is idea should ever have occurred to one who had entirely erroneous. even the slightest tincture of natural philosophy; for it might as well be imagined that a natural philosopher's or a chemist's design is to strengthen the testimony of our senses by à priort reasoning, and to convince us that a stone when thrown will fall to the ground, and that gunpowder will explode when fired ; because they show according to their principles those phenomena must take place as they do. But it would be reckoned a mark of the grossest ignorance and stupidity not to be aware that their object is not to prove the existence of an individual phenomenon, which our eyes have witnessed, but (as the phrase is) to account for it ; that is, to show according to what principle it takes place; to refer, in short, the individual case to a general law of nature. The object of Aristotle's dictum is precisely analogous: he had, doubtless, no thought of adding to the force of any individual syllogism; his design was to point out the general principle on which that process is conducted which takes place in each syllogism. And as the Laws of nature (as they are called) are in reality merely generalized facts, of eralized factas which all the phenomena coming under them are particular instances; so, the proof drawn from

The object is not to prove, but to account for

The object of the Dictum to point out the general process to
which each case conforms.

Laws of eralized factas

The Dictum a condensed form of all demonsiration.

How to trace the abstracting and reasonlng process.

Aristotle's dictum is not a distinct demonstration brought to confirm another demonstration, but is merely a generalized and abstract statement of all demonstration whatever; and is, therefore, in fact, the very demonstration which, under proper suppositions, accommodates itself to the various subject-matters, and which is actually employed in each particular case.
§56. In order to trace more distinctly the different steps of the abstracting process, by which any particular argument may be brought into the most general form, we may first take a syllogism, that is, an argument stated accurately Anargument and at full length, such as the example formerly stated at full length. given :
"Whatever exhibits marks of design had an intelligent author;
The world exhibits marks of design;
Therefore, the world had an intelligent author :"

Propositions expressed by abstract terms.
and then somewhat generalize the expression, by substituting (as in Algebra) arbitrary unmeaning symbols for the significant terms that were originally used. The syllogism will then stand thus :
"Every B is A; C is B; therefore C is A."
the reasonIng no less valir!,

The reasoning, when thus stated, is no less evidently valid, whatever terms A, B, and C respect.
ively may be supposed to stand for; such terms may indeed be inserted as to make all or some
and cqually general. of the assertions false ; but it will still be no less impossible for any one who admits the truth of the premises, in an argument thus constructed, to deny the conclusion; and this it is that constitutes the conclusiveness of an argument.

Viewing, then, the syllogism thus expressed, Syllogism so it appears clearly that "A stands for any thing affrms genwhatever that is affirmed of a certain entire class" eral relations (viz. of every B), "which class comprehends or terns. contains in it something else," viz. C (of which B is, in the second premiss, affirmed) ; and that, consequently, the first term (A) is, in the conclusion, predicated of the third (C).
§57. Now, to assert the validity of this pro- Anotherform cess now before us, is to state the very dictum of stating the cess now before us, is to state the very dictum dictum. we are treating of, with hardly even a verbal alteration, viz. :

1. Any thing whatever, predicated of a whole The three class;
things implied.
2. Under which class something else is contained;
3. May be predicated of that which is so contained.

These three members

The three members into which the maxim is corrcspond to the three here distributed, correspond to the three propo- propositions
sitions of the syllogism to which they are intended respectively to apply.

Advantage of substituting arbitrary symbols for the terms.

Connection, the essential point of the argument.

A ristotle right in using these symbols.

The advantage of substituting for the terms, in a regular syllogism, arbitrary, unmeaning symbols, such as letters of the alphabet, is much the same as in geometry : the reasoning itself is then considered, by itself, clearly, and without any risk of our being misled by the truth or falsity of the conclusion; which is, in fact, accidental and variable ; the essential point being, as far as the argument is concerned, the connection between the premises and the conclusion. We are thus enabled to embrace the general principle of deductive reasoning, and to perceive its applicability to an indefinite number of individual cases. That Aristotle, therefore, should have been accused of making use of these symbols for the purpose of darkening his demonstrations, and that too by persons not unacquainted with geometry and algebra, is truly astonishing.

Syllogism equally true when abEtract terms spe used.
§ 58. It belongs, then, exclusively to a syllogism, properly so called (that is, a valid argument, so stated that its conclusiveness is evident from the mere form of the expression), that if letters, or any other unmeaning symbols, be substituted for the several terms, the validity of the argument shall still be evident. Whenever this
is not the case, the supposed argument is either whe not son unsound and sophistical, or else may be reduced the su, pusest (without any alteration of its meaning) into the syllogistic form; in which form, the test just mentioned may be applied to it.
§ 59. What is called an unsound or fallacious argument, that is, an apparent argument, which an unsound is, in reality, none, cannot, of course, be reduced into this form; but when stated in the form most nearly approaching to this that is possible, its fallaciousness becomes more evident, from its nonconformity to the foregoing rule. For ex-

When reduced to the form, the fat lacy is more evident. ample :
" Whoever is capable of deliberite crime is responsible ;
Example.
An infant is not capable of deliberate crime ;
Therefore, an infant is not responsible."
Here the term "responsible" is affirmed uni- Analysis of versally of "those capable of deliberate crime;" it might, therefore, according to Aristotle's dictum, have been affirmed of any thing contained under that class; but, in the instance before us, nothing is mentioned as contained under that its defective class; only, the term "infant" is excluded from nature pointed out. that class; and though what is affirmed of a whole class may be affirmed of any thing that is contained under it, there is no ground for supposing that it may be denied of whatever is not
so contained; for it is evidently possible that it

W'hy the argument is not good. may be applicable to a whole class and to something else besides. To say, for example, that all trees are vegetables, does not imply that nothing else is a vegetable. Nor, when it is said, that

What the statement implies. all who are capable of deliberate crime are responsible, does this imply that no others are responsible; for though this may be very true,

What is to be done in the analysis of an argument.

The one above did not comply with the rule. it has not been asserted in the premise before us; and in the analysis of an argument, we are to discard all consideration of what might be asserted; contemplating only what actually is laid down in the premises. It is evident, therefore, that such an apparent argument as the above does not comply with the rule laid down, nor can be so stated as to comply with it, and is consequently invalid.
§ 60. Again, in this instance:

Another example.
"Food is necessary to life ; Corn is food; Therefore corn is necessary to life :"

In what the argument is defective.
the term "necessary to life" is affirmed of food, but not universally; for it is not said of every
kind of food the meaning of the assertion being manifestly that some food is necessary to life : here again, therefore, the rule has not been complied with, since that which has been predi-
cated (that is, affirmed or denied), not of the whywe whole, but of a part only of a certain class, can- cannot predinot be, on that ground, predicated of whatever is contained under that class.

DISTRIBUTION AND NON-DISTRIBUTION OF TERNS.

§61. The fallacy in this last case is, what is Fallacy in the usually described in logical language as consisting in the "non-distribution of the middle term;" $\begin{gathered}\text { Non-distribur } \\ \text { tiou of the }\end{gathered}$ that is, its not being employed to denote all the middle term objects to which it is applicable. In order to understand this phrase, it is necessary to observe, that a term is said to be "distributed," when it is taken universally, that is, so as to stand for all its significates; and consequently "undistributed," when it stands for only a portion of its significates.* Thus, "all food," or every kind of What distrifood, are expressions which imply the distribu. ${ }^{\text {bxtion means }}$ tion of the term "food ;" "some food" would Non-distribur imply its non-distribution.

Now, it is plain, that if in each premiss a part only of the middle term is employed, that is, if it lie not at all distributed, no conclusion can be drawn. Hence, if in the example formerly adduced, it had been merely stated that "some-

How the ex-

 ample might have been varied.[^4]thing" (not "whatever," or "every thing") "which exhibits marks of design, is the work of an intelligent author," it would not have fol-

What it would then have implied. lowed, from the world's exhibiting marks of design, that that is the work of an intelligent author

Worde marking distribution or nordistribution not always expressed.

Such propositiens are called Indefinite.

But every proposition must be either Universal or Particular.

Example of each.
§ 62. It is to be observed also, that the words "all" and "every," which mark the distribution of a term, and "some," which marks its nondistribution, are not always expressed : they are frequently understood, and left to be supplied by the context; as, for example, "food is necessary;" viz. "some food;" "man is mortal;" viz. "every man." Propositions thus expressed are called by logicians "indefinite," because it is left undetermined by the form of the expression whether the subject be distributed or not. Nevertheless it is plain that in every proposition the subject either is or is not meant to be distributed, though it be not declared whether it is or not; consequently, every proposition, whether expressed indefinitely or not, must be understood as either "universal" or "particular;" those being called universal, in which the predicate is said of the whole of the subject (or, in other words, where all the significates are included); and those particular, in which only a part of them is included. For example :
"All men are sinful," is universal: "some men This divisun are sinful," particular ; and this division of propositions, having reference to the distribution of the subject, is, in logical language, said to be according to their "quantity."
§63. But the distribution or non-distribution of the predicate is entirely independent of the quantity of the proposition; nor are the signs "all" and "some" ever affixed to the predicate; because its distribution depends upon, and is indicated by, the "quality" of the proposition; that is, its being affirmative or negative ; it being a universal rule, that the predicate of a negative proposition is distributed, and of an affirmative, undistributed. The reason of this may easily be understood, by considering that a term which stands for a whole class may be applied to (that is, affirmed of) any thing that is comprehended under that class, though the term of which it is thus affirmed may be of much narrower extent than that other, and may therefore be far from coinciding with the whole of it. Thus it may be said with truth, that "the Negroes are uncivilized," though the term "uncivilized" be of much wider extent than "Negroes," comprehending, hesides them, Patagonians, Esquimaux, \&c.; so that it would not be allowable to assert, that

Henee, onlys all who are uncivilized are Negroes." It is evpart of the term is used. ident, therefore, that it is a part only of the term "uncivilized" that has been affirmed of "Negroes;" and the same reasoning applies to every affirmative proposition.

But it may be of equal extent with the subject:
this not implied in the form of the expression.

If any part of the predicate is spplicable to the subject, it may be affirmed of the subject.

It may indeed so happen, that the subject and predicate coincide, that is, are of equal extent; as, for example: "all men are rational animals;" "all equilateral triangles are equiangular;" (it being equally true, that "all rational animals are men," and that "all equiangular triangles are equilateral ;") yet this is not implied by the form of the expression; since it would be no less true that "all men are rational animals," even if there were other rational animals besides men.
It is plain, therefore, that if any part of the predicate is applicable to the subject, it may be affirmed, and of course cannot be denied, of that subject; and consequently, when the predicate is denied of the subject, this implies that no part of that predicate is applicable to that subject; that is, that the whole of the predicate is Ma predicals denied of the subject: for to say, for example, ts denied of a snbiset, the whole predicate is denied of the subject. that "no beasts of prey ruminate," implies that beasts of prey are excluded from the whole class of ruminant animals, and consequently that "no ruminant animals are beasts of prey." And
hence results the above-mentioned rule, that the distribution of the predicate is implied in negative propositions, and its non-distribution in affirmatives.
§64. It is to be remembered, therefore, that it is not sufficient for the middle term to occur in a universal proposition; since if that proposition be an affirmative, and the middle term be the predicate of it, it will not be distributed. For example: if in the example formerly given, it had been merely asserted, that "all the works of an intelligent author show marks of design," and that "the universe shows marks of design," It must be so nothing could have been proved; since, though both these propositions are universal, the middle term is made the predicate in each, and both are affirmative ; and accordingly, the rule of Aristotle is not here complied with, since the term "work of an intelligent author," which is to be proved applicable to "the universe," would not have been affirmed of the middle term (" what shows marks of design") under which "universe" is contained; but the middle term, on the contrary, would have been affirmed of it.

If, however, one of the premises be negative, if one prem the middle term may then be made the predicate

Distribution of predicate implied in negative propositions: non-distribution in affirmatives.

Not sumfecient for the middle term to occur in a universal proposition. connected wish the terms of the conclusion, that those terms may be compared tor gether.

Wre, the mid- of that, and will thus, according to the above dle term may bo made the predicate of that, and will be distributed. remark, be distributed. For example :
" No ruminant animals are predacious :
The lion is predacious;

Therefore the lion is not ruminant :"
this is a valid syllogism; and the middle term (predacious) is distributed by being made the predicate of a negative proposition. The form, indeed, of the syllogism is not that prescribed by the dictum of Aristotle, but it may easily be reduced to that form, by stating the first proposition thus: "No predacious animals are ruminant;" which is manifestly implied (as was above remarked) in the assertion that "no ru minant animals are predacious." The syllogism will thus appear in the form to which the dictum applies.

All argunents cannut be reduced by so short a process.
§ 65. It is not every argument, indeed, that can be reduced to this form by so short and simple an alteration as in the case before us. A longer and more complex process will often be required, and rules may be laid down to facilitate this process in certain cases; but there is no sound argument but what can be reduced into

But all arguments may this form, without at all departing from the real meaning and drift of it; and the form will be
found (though more prolix than is needed for be reluced ordinary use) the most perspicuous in which an to the prescribed forta. argument can be exhibited.
§66. All deductive reasoning whatever, then, Alldeluctive rests on the one simple principle laid down by Aristotle, that dictum.
"What is prodicated, either affirmatively or negatively, of a term distributed, may be predicated in like manner (that is, affirmatively or negatively) of any thing contained under that term."

So that, wher our object is to prove any proposition, that is, f.o show that one term may rightly be affirmed or denied of another, the process which really takes place in our minds is, that we refer that term (of which the other is to be thus predicated) to some class (that is, middle term) of which that other may be affirmed, or denied, as the case may be. Whatever the subject-matter of an argument may be, the reasoning itself, considered by itself, is in every case the same process; and if the writers against Logic had kept this in mind, they would have been cautious of expressing their contempt of what they call "syllogistic reasoning," which embraces all deductive reasoning; and instead of ridiculing Aristotle's principle for its obviousness and simplicity, would have perceived that these are, in fact, its
procese of processes of proof.

The reasoning always the same.

Mistakes of writers on Logic.
simple and seneral.
highest praise : the easiest, shortest, and most evident theory, provided it answer the purpose of explanation, being ever the best.

RULES FOR EXAMINING SYLLOGISMS.

Tests of the validity of syllogisms.

1st test.
§67. The following axioms or canons serve as tests of the validity of that class of syllogisms which we have considered.

1st. If two terms agree with one and the same. third, they agree with each other.
$2 d$ test.

The first the test of all affirmative conclusions. The second of negative.

Every syllogism has three and inly three terms.

2 d . If one term agrees and another disagrees with one and the same third, these two disagree with each other.
On the former of these canons rests the validity of affirmative conclusions; on the latter, of negative: for, no syllogism can be faulty which does not violate these canons; none correct which does; hence, on these two canons are built the following rules or cautions, which are to be observed with respect to syllogisms, for the purpose of ascertaining whether those canons have been strictly observed or not.

1st. Every syllogism has three and only three. terms; viz. the middle term and the two terms of the Conclusion : the terms of the Conclusion are sometimes called extremes.

2d. Every syllogism his three and only three
propositions; viz. the major premise ; the minor premise; and the conclusion.

3d. If the middle term is ambiguous, there are in reality two middle terms, in sense, though but one in sound.

There are two cases of ambiguity: 1st. Where the middle term is equivocal; that is, when used in different senses in the two premises. For example :
" Light is contrary to darkness; Feathers are light; therefore, Feathers are contrary to darkness."

2d. Where the middle term is not distributed; for as it is then used to stand for a part only of its significates, it may happen that one of the extremes is compared with one part of the whole term, and the other with another part of it. For example :

> "White is a color;
> Black is a color; therefore, Black is white."

Again :
" Some animals are beasts; Some animals are birds ; therefore, Some birds are beasts."

3d. The middle term, therefore, must be dis- term must be tributed, once, at least. in the premises ; that is,
giem has three and only three propusitions. Middle term must nut bs ambiguouc.

Two cases

1st case.

Exampie.

』d case

Examples:

The middle once distributed:
and once is 8ufficient.
by being the subject of a universal,* or predicate of a negative; \dagger and once is sufficient; since if one extreme has been compared with a part of the middle term, and annther to the whole of it, they must have been compared with the same.

No term must be distributed in the conclusion which was not distributed in a premise.

Example.

Negative premises prove noth.
ing.
" All quadrupeds are animals, A bird is not a quadruped; therefore, It is not an animal." Illicit process of the major.

5th. From negative premises you can infer nothing. For, in them the Middle is pronounced to disagree with both extremes; therefore they cannot be compared together: for, the extremes can only be compared when the middle agrees with both; or, agrees with one, and disagrees with the other. For example :

Example.
" A fish is not a quadruped;"
" A bird is not a quadruped," proves nothing.

[^5]6th. If one premise be negative, the conclu- if one premsion must be negative; for, in that premise the ise is negamiddle term is pronounced to disagree with one of the extremes, and in the other premise (which of course is affirmative by the preceding rule), to agree with the other extreme; therefore, the extremes disagreeing with each other, the conclusion is negative. In the same manner it may and reciprobe shown, that to prove a negative conclusion, cally. one of the premises must be a negative.

By these six rules all Syllogisms are to be tried; and from them it will be evident, 1st, that nothing can be proved from two particular

What for lows from these six rules. premises; (since you will then have either the middle term undistributed, or an illicit process. For example :

> "Some animals are sagacious; Some beasts are not sagacious; Some beasts are not animals.")

And, for the same reason, 2 dly , that if one of 2 d inference the premises be particular, the conclusion must be particular. For example:

> "All who fight bravely deserve reward;
> "Some soldiers fight bravely ;" you can only infer that
> "Some soldiers deserve reward:"
for to infer a universal conclusion would be an illicit process of the minor. But from two

Two univer universal Premises you cannot always infer a
sal premises denot always give a universal conclusion. universal Conclusion. For example :
" All gold is precious;
All gold is a mineral ; therefore, Some mineral is precious.'

And even when we can infer a universal, we are always at liberty to infer a particular; since what is predicated of all may of course be predicated of some.

OF FALLACIES.

Definition of a fallacy. "any unsound mode of arguing, which appears to demand our conviction, and to be decisive of the question in hand, when in fairness it is
Detection of not." In the practical detection of each indidepends on acuteness.

Hints and rules useful. vidual fallacy, much must depend on natural and acquired acuteness; nor can any rules be given, the mere learning of which will enable us to apply them with mechanical certainty and readiness; but still we may give some hints that will lead to correct general views of the subject, and tend to engender such a habit of mind, as will lead to critical examinations.

Same of Logicin general

Indeed, the case is the same with respect to Logic in general ; scarcely any one would, in ordinary practice, state to himself either his
own or another's reasoning, in syllogisms at full length; yet a familiarity with logical principles to cultiv habits of tends very much (as all feel, who are really well lear reasoning. acquainted with them) to beget a habit of clear and sound reasoning. The truth is, in this as in many other things, there are processes going on in the mind (when we are practising any thing quite familiar to us), with such rapidity

The habit fixed, we axed, we turally follow the processes. as to leave no trace in the memory; and we often apply principles which did not, as far as we are conscious, even occur to us at the time.
§69. Let it be remembered, that in every Conclusion process of reasoning, logically stated, the conclusion is inferred from two antecedent propositions, called the Premises. Hence, it is manifest, that in every argument, the fault, if there be any, must be either,
follows from
two antecedent premises.

Fallacy, if amy; either in the premises

1st. In the premises; or,
2d. In the conclusion (when it does not follow from them) ; or,
or conclasion, or both.

3d. In both.
In every fallacy, the conclusion either does or does not follow from the premises.

When the fault is in the premises; that is, When in the when they are such as ought not to have been premisas: assumed, and the conclusion legitimately follows from them, the fallacy s called a Material Fal-
lacy, because it lies in the matter of the argument.

When in the conclusion.

Rules for examining a train of argument.

When in both.

Where the conclusion does not follow from the premises, it is manifest that the fault is in the reasoning, and in that alone: these, therefore, are called Logical Fallacies, as being properly violations of those rules of reasoning which it is the province of logic to lay down.

When the fault lies in both the premises and reasoning, the fallacy is both Material and Logical
§ 70. In examining a train of argumentation, to ascertain if a fallacy have crept into it, the following points would naturally suggest themselves:

1at Rule.
lst. What is the proposition to be proved? On what facts or truths, as premises, is the argument to rest? and, What are the marks of truth by which the conclusion may be known?
${ }^{2 d}$ Rule.
2 d . Are the premises both true? If facts, are they substantiated by sufficient proofs? If truths, were they logically inferred, and from correct premises?
3 Rule.
3d. Is the middle term what it should be, and the conclusion logically inferred from the premises?

Auggestions serve is guides,

These general suggestions may serve as guides in examining arguments for the purpose of de-
tecting fallacies; but however perfect general zules may be, it is quite certain that error, in its thousand forms, will not always be separated from truth, even by those who most thoroughly understand and carefully apply such rules

CONCLUDINGREMARES.

§71. The imperfect and irregular sketch which nas here been attempted of deductive logic, may suffice to point out the general drift and purpose of the science, and to show its entire correspondence with the reasonings in Geometry. The analytical form, which has here been adopted, is, generally speaking, better suited for introducing any science in the plainest and most interesting form ; though the synthetical is the more regular, and the more compendious form for storing it up in the memory.
§ 72. It has been a matter about which writers on logic have differed, whether, and in conformity to what principles, Induction forms a part of the science; Archbishop Whately maintaining that logic is only concerned in inferring truths from known and admitted premises, and that all reasoning, whether Inductive or Deductive, is shown by analysis to have the syllogism
to detect errur.

Logic corresponds with the reasonings in Geometry.

Analytical form.

Synthetical form.

Induction: does it forts a part of Logic ? opinion
sills views, for its type ; while Mr. Mill, a writer of perhaps greater authority, holds that deductive logic is but the carrying out of what induction begins; that all reasoning is founded on principles of inference ulterior to the syllogism, and that the syllogism is the test of deduction only.

Without presuming at all to decide definitively a question which has been considered and
Reasons for the course taken. passed upon by two of the most acute minds of the age, it may perhaps not be out of place to state the reasons which induced me to adopt the opinions of Mr. Mill in view of the partfcular use which I wished to make of logic

Leading obJects of the plan.
§ 73. It was, as stated in the general plan, one of my leading objects to point out the correspondence between the science of logic and the science of mathematics: to show, in fact. that mathematical reasoning conforms, in every respect, to the strictest rules of logic, and is indeed but logic applied to the abstract quantities, Number and Space. In treating of space, about which the science of Geometry is conversant, we shall see that the reasoning rests mainly on the Axioms, how axioms, and that these are established by inducestablished. tive processes. The processes of reasoning which relate to numbers, whether the numbers are represented by figures or letters, consist of two parts.

1st. To obtain formulas for, that is, to express in the language of science, the relations between the quantities, facts, truths or principles, what-
ever they may be, that form the subject of the the reasoning process. reasoning; and,

2dly. To deduce from these, by processes purely logical, all the truths which are implied in them, as premises.
§ 74. Before dismissing the subject, it may be well to remark, that every induction may be thrown into the form of a syllogism, by supplying the major premise. If this be done, we shall see that something equivalent to the uniformity of the course of nature will appear as the ultimate major premise of all inductions; and will, therefore, stand to all inductions in the relation in which, as has been shown, the major premise of a syllogism always stands to the conclusion; not contributing at all to prove it, but being a necessary condition of its being proverl. This fact sustains the view taken by Mr. Mill, as stated above; for, this ultimate ma- How this jor premise, or any substitution for it, is an infer- major prem ence by Induction, but cannot be arrived at by fee is obtained. means of a syllogism.
outlines of mathematioal soiende.
$\left\{\begin{array}{l}\text { 1. ABSTRACT. } \\ \text { 2. CURRENCY. } \\ \text { 3. WEIGHT. } \\ \text { 4. TIME. }\end{array}\right.$

BOOK II.

mathematical SCIENCE.

CHAPTER I.

QUANTITY AND MATHEMATICAL SCIENCE DEFINED-DIFFERENT KNDE OF QUAK-TITY-LANGUAGE OF MATHEMATICS EXPLALNED-SUBJECTS CLASSIFLED-UNTT OF MEASURE DEFLNED-MATHEMATICS A DEDUCTIVE SCIBNCE.
QUANTITY.
§ 75. Quantity is any thing which can be Quantity increased, diminished, and measured.
§76. Mathematics is the science of quan-Mathematice tity; that is, the science which treats of the defined. measures of quantities and of their relations to each other.
§ 7\%. There are two kinds of quantity; Num- Kinds of ber and Space.

NUMBER.
§ 78. A NUMBER is a unit, or a collection Number defined. of units.

Abstract. An abstract number is one whose unit is not named ; as, one, two, three, \&c.
Denominate. A denominate number is one whose unit is named; as three feet, three yards, three pounds. Such numbers are also called concrete numbers.

How we obtain an ldea of number. bers? By first presenting to the mind, through the eye, a single thing, and calling it one. Then presenting two things, and naming them Two ; then three things, and naming them three; and so on for other numbers. Thus, we acquire primarily, in a concrete form, our elementary notions of number, by perception, comparison, and reflection; for, we must first perceive how many things are numbered; then compare what is designated by the word one,
Reasons. with what is designated by the words two, three, \&c., and then reflect on the results of such comparisons until we clearly apprehend the difference in the signification of the words. Having thus acquired, in a concrete form, our conceptions of numbers, we can consider numbers as separated from any particular objects, Two axioms necessary for the forma. tion of nambers.

1st axiom.
How do we acquire our first notions of num-

It is done by perception, comparison, and reflection.
greater by one than the number to which the one was added.

2d. That one may be divided into any num- 2 d axiom. ber of equal parts.
§79. Under Number, we have four species, or Four kinds subdivisions, each differing from the other three, in the unit of its base: thus,

1. Abstract Number, when the base is the ab- Abstract. stract unit one:
2. Number of Currency, when the base is a Currency. unit of currency, as one dollar:
3. Number of Weight, when the base is a unit weight. of weight, as one pound:
4. Number of Time, when the base is a unit Time. of time, as one day.

Hence, in number, we have four kinds of Fourkinds of units. units: Abstract Units; Units of Currency; Units of Weight; and Units of Time.
SPACE.
§80. Space is indefinite extension. We ac-

Space defined. quire our ideas of it by observing that parts of it are occupied by matter or bodies. This enables us to attach a definite idea to the word place. We are then able to say, intelligibly, that a point is that which has place, or posi- a point.
tion in space, without occupying any part of it. Having conceived a second point in space, we can understand the important axiom, "A

Axiom concerning the otraightline. straight line is the shortest distance between two points;" and this line we call length, or a dimension of space.
$\S 81$. If we conceive a second straight line to be drawn, meeting the first, but lying in a

Breadth defined. direction directly from it, we shall have a second dimension of space, which we call breadth. If these lines be prolonged, in both directions, they will include four portions of space, which make up what is called a plane surface, or plane:

A plane deflned. hence, a plane has two dimensions, length and breadth. If now we draw a line on either side of this plane, we shall have another dimen-

Space has three dimenslons. sion of space, called thickness : hence, space has three dimensions-length, breadth, and thickness.

Figure defined.

Line defined.
§ 82. A portion of space limited by boundaries, is called a Figure. If such portion of space have but one dimension, it is called a line, and may be limited by two points, one at each
Two kinds of lines: straight and curved.
extremity. There are two kinds of lines, straight and curved. A straight line, is one which does not change its direction between any two of its
points, and a curved line constantly changes its direction at every point.
§ 83. A portion of space having two dimen- Surface: sions is called a surface. There are two kinds of surfaces-Plane Surfaces and Curved Sur-

Plane, carved. faces. With the former, a straight line, having two points in common, will always coincide, however it may be placed, while with the latter it will not. The boundaries of surfaces are of a surface. lines, straight or curved.
§ 84. A limited portion of space, having three Volumes. dimensions, is called a Volume. All volumes Boondaries are bounded by surfaces, either plane or curved.
§ 85. An angle is the amount of divergence of two lines, of two planes, or of several planes, meeting at a point; and is measured, like other magnitudes, by comparing it with its unit of measure. Hence, in space, we have four units, differing in kind:

1. Linear Units, for the measurement of Linear. lines;
2. Units of Surface, for the measurement of surface. surfaces;
3. Units of Volume, for the measurement of Volume volumes; and

Angle.
4. Units of Angles, for the measurement of angles.

Elght units. §86. Besides the eight kinds of units, four of number and four of space, embraced in the above classification, and in which the units of each class are connected by known laws, there are yet isolated denominate numbers, such as fire chairs, six horses, seven things, \&c., which Units with- do not admit of classification, because they have out law. no law of formation. Neither does this classiInfinitesimal units. fication include the Infinitesimal Units, which are specially treated of in Chapter V., Book II., and which are the elements of a very important branch of Mathematical Science.

Language of
mathematics.
§ 8\%. The language of Mathematics is mixed. Although composed mainly of symbols, which are defined with reference to the uses which are made of them, and therefore have a precise signification; it is also composed, in part, of words transferred from our common lan-

Symbols general. guage. The symbols, although arbitrary signs, are, nevertheless, entirely general, as signs and instruments of thought; and when the sense in which they are used is once fixed, by definition,
Sense un- they preserve throughout the entire analysis
changed. precisely the same signification. The meaning
of the words borrowed from our common rocabulary is often modified, and sometimes entirely changed, when the words are transferred to the language of science. They are then used in a particular sense, and are said to have a technical signification.
$\S 88$. It is of the first importance that the elements of the languare must be elements of the language be clearly understood, nnderetond: -that the signification of every word or symbol be distinctly apprehended, and that the connection between the thought and the word or symbol which expresses it, be so well established that the one shall immediately suggest the other. It is not possible to pursue the subtle reasonings of Mathematics, and to carry ont the trains of thought to which they give rise, without entire familiarity with those means which the mind employs to aid its investigations. The child cannot read till he has learned the alphabet; nor can the scholar feel the delicate beauties of Shakspeare, or be moved by the sublimity of Milton, before studying and learning the language in which their immortal thoughts are clothed.

[^6]
Mathemati-

 cal reasonings require it.Cannot use any language well till we know it.
> sented by symbols; ated on by these symbols. sndare oper. viewed and operated on through these symbols indicated by another class of symbols called signs. signs. These, combined with the symbols What constl- which represent the quantities, make up, as tutes the language.
to the mind by arbitrary symbols. They are which represent them; and all operations are we have stated above, the pure mathematical language; and this, in connection with that which is borrowed from our common language, forms the language of mathematical science. This language is at once comprehensive and Its nature. accurate. It is capable of stating the most general propositions, and of presenting to the mind, in their proper order, all elementary principles What it ac connected with their solution. By its genercomplishes. ality it reaches over the whole field of the pure and mixed sciences, and gathers into condensed forms all the conditions and relations necessary to the development of particular facts and universal truths. Thus, the skill of the analyst deduces from the same equation the veExtent and locity of an apple falling to the ground, and the power of Analysis. verification of the law of universal gravitation.

LANGUAGE OF MATHEMATICS.

Language of
Mathematice. $\S 90$. The language of Mathematics embraces, 1st. Parts of our written and spoken language; 2d. The language of Figures,

3d. The language of Lines-straight and curved;
Lines.
4th. The language of Letters; and these forms Letters. of language determine the classification of the branches of the Science of Mathematics.

LANGUAGE OF NUMBER-ARITHMETIC.

§ 91. The ten characters, called figures, are Language the alphabet of the language of number. The various ways in which they are combined, forming the exact and copious language of computation, will be fully explained under the head of Arithmetic, in a chapter exclusively devoted to the consideration of numbers, their laws and their language.

LANGUAGE OF LINES-GEOMETRY.

§ 92. Lines, straight and curved, are the ele- Language of ments of the pictorial language applicable to Geometry. space. The definitions and axioms relating to space, and all the reasonings founded on them, make up the science of Geometry, which will be fully treated under its proper head.

LANGUAGE OF LETTERS-ANALYSIS.
§ 93. Analysis is a general term embracing analysis, all the operations which can be performed on
quantities when represented by letters. In this branch of mathematics, all the quantities con-

Quantities represented by letters. sidered, whether abstract or concrete, are represented by letters of the alphabet, and the operations to be performed on them are indicated by a few arbitrary signs. The letters symbols. and signs are called Symbols, and by their combination we form the Algebraic Notation and Language.

Analysis, Algebra; Analytical Geometry.

Calculus.
§ 94. Analysis, in its simplest form, takes the name of Algebra. Analytical Geometry, the Differential and Integral Calculus, extended to include the Theors of Variations, are its higher and most advanced branches.

Term Analysis defired.
§ 95. The term Analysis has also another signification. It denotes the process of separating Its nature. any complex whole into the elements of which

Synthesis defined. it is composed. It is opposed to Synthesis, a term which denotes the processes of first considering the elements separately, then combining them, and ascertaining the results of the combination.

Analytical method.

The Analytical method is best adapted to investigation, and the presentation of subjects in their general outlines; the Synthetical method is best adapted to instruction, because it exhib.
its all the parts of a subject separately, and in Analysis. their proper order and connection. Analysis deduces all the parts from a whole: Synthesis synthesis. forms a whole from the separate parts.
§ 96. Arithmetic, Algebra, and Geometry are Arithmetic, the Elementary branches of Mathematical Sci- Algebra, ence. Every truth which is established by elementary mathematical reasoning, is developed by an arithmetical, geometrical, or analytical process, or br a combination of them. The reasoning in each branch is condacted on principles identically the same. Erery sign, or symbol, or Reasoning technical word, is accurately defined, so that to the eame. each there is attached a definite and precise idea. Thus, the language is made so exact and Language certain, as to admit of no ambiguity.

INFINITESIMAL CALCULUS.

$\S 97$. The language of the Infinitesimal Cal- Languaze of the culus is rery simple. Its chief element is the Infiniterimal Calcsius. letter d, which, when written before a quantity, denotes that that quantity increases or decreases according to the law of continuity, and the expression thus arising is one link in that law. Thus, $d x$ denotes that the quantity represented

What does $d x$ denote. by x, changes according to the law of continuity, and that $d x$ is the unit of that change.

PURE MATHEMATICS.

Pure Mathematics.
§ 98. The Pure Mathematics embraces all the principles of the science, and all the processes by which those principles are developed from Number and the abstract quantities, Number and Space. All Space. the definitions and axioms, and all the truths deduced from them, are traceable to these two sources.

Mathematics, as used by the ancients:
§ 99. Mathematics, in its primary signification, as used by the ancients, embraced every acquired science, and was equally applicable to all branches of knowledge. Subsequently it was restricted to those branches only which were acquired by severe study, or discipline, and

Embraced all subjects which were disciplinary in their nature. its votaries were called Disciples. Those subjects, therefore, which required patient investigation, exact reasoning, and the aid of the mathematical analysis, were called Disciplinal or Mathematical, because of the greater evidence in the arguments, the infallible certainty of the conclusions, and the mental training aud development which such exercises produced.

Pure Mathe- § 100. The Pure Matliematics is based on foundations. which are inferred from observation and expe-
rience; that is, observation and experience fur- Premises. nish the information necessary to such intuitive inductions.* From these definitions and axioms, as premises, all the truths of the science Reasoning. are established by processes of deductive reasoning; and there is not, in the whole range of mathematical science any logical test of truth, but in a conformity of the conclusions to the What they definitions and axioms, or to such principles or propositions as have been established from them. Hence, we see, that the science of Pure Mathe- In what the matics, which consists merely in inferring, by $\begin{gathered}\text { sience con } \\ \text { siets. }\end{gathered}$ fixed rules, all the truths which can be deduced from given promises, is purely a Deductive Science. The precision and accuracy of the definitions; the certainty which is felt in the truth of the axioms; the obvious and fixed re-Precision of lation between the sign and the thing signified; and the certain formulas to which the reasoning processes are reduced, have given to mathematics the name of "Exact Science."

Exact Science.
§ 101. We have remarked that all the rea- All reasonsonings of mathematical science, and all the ing based on truths which they establish, are based on the and axioms. definitions and axioms, which correspond to the

[^7]major premise of the syllogism. If the resemblance which the minor premise asserts to the
Relations middle term were obvious to the senses, as it not obvious. is in the proposition, "Socrates was a man," or were at once ascertainable by direct observation, or were as evident as the intuitive truth, "A whole is equal to the sum of all its parts:"

Deductive Science, necessary.

Trains of reasoning:

What they accomplish. there would be no necessity for trains of reasoning, and Deductive Science would not exist. Trains of reasoning are necessary only for the sake of extending the definitions and axioms to other cases in which we not only cannot directly observe what is to be proved, but cannot directly observe even the mark which is to prove it.

Syllogism, the final tert of deduc tion.

Axioms and definitions, tests of truth.
§ 102. Although the syllogism is the ultimate test in all deductive reasoning (and indeed in all inductive, if we admit the uniformity of the course of nature), still we do not find it convenient or necessary, in mathematics, to throw every proposition into the form of a syllogism.

The definitions and axioms, and the propositions established from them, are our tests of truth; and whenever any new proposition call be brought to conform to any one of these tests, it is regarded as proved, and declared to be true.

A proposition: when proved.
$\S 103$. When general formulas have been framed, determining the limits within which the deductions may be drawn (that is, what shall be the tests of truth), as often as a new case can be at once seen to come within one of the formulas, the principle applies to the new case, and the business is ended. But new cases are continually arising, which do not obviously come within any formula that will settle the questions we want solved in regard to them, and it is necessary to reduce them to such formulas. This gives rise to the existence of the science of mathematics, requiring the highest scientific genius in those who contributed to its creation, and calling for a most continued and vigorous excrtion of intellect, in order to appropriate it, when created.

MIXED MATHEMATICS.

§ 104. The Mixed Mathematics embraces the applications of the principles and laws of the

Mixed mathema tics. Pure Mathematics to all investigations in which the mathematical language is employed and to the solution of all questions of a practical nature, whether they relate to abstract or concrete quantity.

QUANTITY MEASURED.

Quantity.

Increased and diminished, defined.
§ 105. Quantity has been defined, "any thing which can be increased, diminished, and measured." The terms increased or diminished, are easily understood, implying merely the property of being made larger or smaller. The term measured is not so easily comprehended, because it has only a relative meaning.

Measured.
The term " measured," applied to a quantity, implies the existence of some known quantity

What it means. of the same kind, which is regarded as a standard. With this standard, the quantity to be measured is compared with respect to its extent or
Standard: magnitude. To such standard, whatever it may iscalled be, we give the name of unity, or unit of unity. measure; and the number of times which any quantity contains its unit of measure, is the numerical value of the quantity measured. The Magnitude: extent or magnitude of a quantity is, therefore, merely relative. merely relative, and hence, we can form no idea of it, except by the aid of comparison. Space,

Space: indefinite.

Measurement ascertains relation: for example, is entirely indefinite, and we measure parts of it by means of certain standards, called measures; and after any measurement is completed, we have only ascertained the relation or proportion which exists between the standard we adopted and the thing measured. Hence,
measurement is, after all, but a mere process A process of of comparison.

Abstract

comparison.

§ 106. The quantities, Number and Space, are but Number and vague and indefinite conceptions, until we compare $\begin{gathered}\text { Space: } \\ \text { known by }\end{gathered}$ them with their units of measure, and even these comparison. units are arrived at only by processes of comparison. Comparison is the great means of discovering the Comparison relations of things to each other, as well in general ${ }^{2}$ general $\begin{gathered}\text { method. }\end{gathered}$ logic, as in the science of mathematics, which develops the processes by which quantities are compared, and the results of such comparisons.
$\S 10 \%$ Besides the classification of quantity Quantity. into Number and Space, we may, if we please, divide it into Abstract and Concrete. An ab- Abstract. stract quantity is a mere number, in which the unit is not named, and has no relation to matter or to the kind of things numbered. A con- Concreta. crete quantity is a definite object or a collection of such objects. Concrete quantities are expressed by numbers and letters, and also by How reprolines, straight and curved. The number "three" is entirely abstract, expressing an idea having no connection with things; while the number "three pounds of tea," or "three apples," pre- Example sents to the mind an idea of concrete objects. sented. Example of the abstract. concrete. So, a portion of space, bounded by a surface, all
the points of which are equally distant from a

Sphere
defined.

Mathematics concerned with Number and Space.
Reasoning involves comparison. mathematical reasoning must consist in comparing the quantities which come from Number and Space with each other.

Two quantities can sustain but two relations. certain point within called the centre, is but a mental conception of form ; but regarded as a portion of space, gives rise to the additional idea of a named and defined thing.

COMPARISON OF QUANTITIES.

§ 108. We have seen that the pure mathematics are concerned with the two quantities, Number and Space. We have also seen, that reasoning necessarily involves comparison: hence,
§ 109. Any two quantities, compared with each other, must necessarily sustain one of two relations: they must be equal, or unequal. What axioms or formulas have we for inferring the one or the other?

AXIOMS FOR INFERRING EQUALITY.

1. Quantities which contain the same unit an Formulas equal number of times, are equal. coincide, are equal in all their parts.
2. Things which are equal to the same thing are equal to one another.
3. A whole is equal to the sum of all its parts
4. If equals be added to equals, the sums are equal.
5. If equals be taken from equals, the remainders are equal.

AXIOMS FOR INFERRING LNEQUALITY.

1. A whole is greater than any of its parts.
2. If equals be added to unequals, the sums are unequal.
3. If equals be taken from unequals, the remainders are unequal.
§ 110. We have thus completed a very brief and general analytical view of Mathematical Science. We have named and defined

What fear tures have been ske chert. the subjects of which it treats-and the forms of the language employed. We have pointed out the character of the definitions, and the nature of the elementary and intuitive propositions on which the science rests; also, the kind of reasoning employed in its creation, and its divisions resulting from the use of different symbols and differences of language. We shall now proceed to treat the branches separately.

CHAPTER II.

ARITHMETIC-SCIENCE AND ART OF NUMBERS.

SECTION I.

```
##TEGRAL UNITB.
```

FIRST NOTIONS OF NUMBERS.
§111. There is but a single elementary idea But one ele in the science of numbers: it is the idea of the mentary idea unit one. There is but one way of impressing How imthis idea on the mind. It is by presenting to pressed ou the senses a single object; as, one apple, one peach, one pear, \&c.
§ 112. There are three signs by means of Threeslgns which the idea of one is expressed and commu- for exprea nicated. They are,

$$
\text { 1st. The word one. } A \text { word }
$$

2d. The Roman character 1.
Roman
3d. The figure 1.
character:

Figure.

New ideas which ariso by adding one.
§ 113. If one be added to one, the idea thus arising is different from the idea of one, and is complex. This new idea has also three signs; viz. rwo, II., and 2. If one be again added, that is, added to two, the new idea has likewise three signs; viz. three, III., and 3. These Collections collections, and similar ones, are called numare num. bear. bers. Hence,

A nomber is a unit or a collection of units.

IDEAS OF NUMBERS GENERALIZED.

Ideas of numbers generalized.
§ 114. If we begin with the idea of the number one, and then add it to one, making two; and then add it to two, making three ; and then to three, making four; and then to four, making How formed five, and so on; it is plain that we shall form a series of numbers, each of which will be greater

Unity the basis.

Three ways of expressing them.
ways:
1st way. 1st. By the words one, two, three, Stc., of our common language ;
2 d way. 2d. By the Roman characters; and,
2 d was. 3d. By figures.
$\S 115$. Since all numbers, whether integral or all numbers fractional, must come from, and hence be concome from one: nected with, the unit one, it follows that there is but one purely elementary idea in the science of numbers. Hence, the idea of every number, regarded as made up of units (and all numbers except one must be so regarded when we analyze them), is necessarily complex. For, since the number arises from the addition of ones, the apprehension of it is incomplete until we understand how those additions were made; and therefore, a full idea of the number is necessarily complex.
§116. But if we regard a number as an entirety, that is, as an entire or whole thing, as an entire two, or three, or four, without pausing to analyze the units of which it is made up, it may

When a number may be regarded as incomplez. then be regarded as a simple or incomplex idea; though, as we have seen, such idea may always be traced to that of the unit one, which forms the basis of the number.

UNITYANDAUNIT DEFINED.

§ 11\%. When we name a number, as twenty what is nefeet, two things are necessary to its clear appre- cessary to the hension.
apprehensiou of a number

First.

Second.
asis of the number i. 3 UNITY.

When it is called unity,

1st. A distinct apprehension of the single thing which forms the base of the number; and, 2d. A distinct apprehension of the number of times which that thing is taken.
The single thing, which forms the base of the number, is called unity, or a unit. It is called unity, when it is regarded as the primary base of the number; that is, when it is the final standard to which all the numbers that come from it
and when a unit. are referred. It is called a unit when it is regarded as one of the collection of several equal things which form a number. Thus, in the example, one fout, regarded as a standard and the base of the number, is called unity; but, considered as one of the twenty equal feet which make up the number, it is called a unit.

OF SIMPLE AND DENOMINATE NUMBERS.

Abstract unit.

Denominate unit.
§ 118. A simple or abstract unit, is one, without regard to the kind of thing to which the term one may be applied.

A denominate or concrete unit, is one thing named or denominated ; as, one apple, one peach, one pear, one horse, \&c.

Number has no reference
§ 119, Number, as such, has no reference to the particular things numbered. But to dis-
tinguish numbers which are applied to particular to the things units from those which are purely abstıact, we numbered. call the latter Abstract or Simple Numbers, simple and the former Concrete or Denominate Num- Denominate. bers. Thus, fifteen is an abstract or simple number, because the unit is one; and fifteen Examples. pounds is a concrete or denominate number, because its unit, one pound, is denominated or named.

$\triangle L P H A B E T-W O R D S-G R A M M A R$.

§ 120. The term alphabet, in its most general Alphabel sense, denotes a set of characters which form the elements of a written language.

When any one of these characters, or any Words. combination of them, is used as the sign of a distinct notion or idea, it is called a word; and the naming of the characters of which the word is composed, is called its spelling.

Grammar, as a science, treats of the estab- Grammat lished connection and relation of words, as the signs of ideas.

> ABITHMETICAL ALPHABET.
§ 121. The arithmetical alphabet consists of Arithmetion ten characters, called figures. They are,

and each may be regarded as a word, since it stands for a distinct idea.
words-spelling and reading in addition.

One cannot be spelled. character 1 which represents it, is also elementary, and hence, cannot be spelled by the other characters of the Arithmetical Alphabet ($\$ 121$). But the idea which is expressed by 2 comes from

Spelling by the arithmetical characters. the addition of 1 and 1 : hence, the word represented by the character 2 , may be spelled by 1 and 1 . Thus, 1 and 1 are 2 , is the arithmetical spelling of the word two.

Three is spelled thus: 1 and 2 are 3 ; and also, 2 and 1 are 3.
Examples. Four is spelled, 1 and 3 are 4; 3 and 1 are 4; 2 and 2 are 4.

Five is spelled, 1 and 4 are $5 ; 4$ and 1 are 5 ; 2 and 3 are $5 ; 3$ and 2 are 5.

Six is spelled, 1 and 5 are $6 ; 5$ and 1 are 6 ; 2 and 4 are $6 ; 4$ and 2 are $6 ; 3$ and 3 are 6 .

All numbers may be spelled in a similar way.
§ 123. In a similar manner, any number in arithmetic may be spelled; and hence we see that the process of spelling in addition consists simply, in naming any two elements which will make up the number. All the numbers in ad.
dition are therefore spelled with two syllables. The reading consists in naming only the word Res ling: in which expresses the final idea. Thus, whas it conists.

0	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	1
Ono two three four five six	seven eight	nine	ten.						

Es umples.

We may now read the words which express the first hundred combinations.

READINGS.

1 1	2	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	4	5	6 1	7	8	9 1	$\begin{array}{r} 10 \\ 1 \end{array}$	Tu $)$ three, fo ar, \&ce
1	2	3	4	5	6	7	8	9	10	$\begin{aligned} & \text { Thee, four, } \\ & \text { \&ec. } \end{aligned}$
2	2	2	2	2	2	2	2	2	2	
1	2	3	4	5	6	7	8	9	10	Four, five, \&c.
3	3	3	3	3	3	3	3	3	3	
1	2	3	4	5	6	7	8	9	10	Five, six, \&a
4	4	4	4	4	4	4	4	4	4	
1	2	3	4	5	6	7	8	9	10	Six, seven, \&c.
5	5	5	5	5	5	5	5	5	5	
1	2	3	4	5	6	7	8	9	10	Seven, eigh \&c.
6	6	6	6	6	6	6	6	6	6	
1	2	3	4	5	6	7	8	9	10	Eight, nine, se.
7	7	7	7	7	7	7	7	7	7	
1	2	3	4	5	6	7	8	9	10	Nine, ten, dia
8	8	8	8	8	8	8	8	8	8	

Ten, cleven, \&c.	1	2	3	4	5	6	7	8	9	
	9	9	9	9	9	$\therefore 9$	9	9	9.	9
Eleven, iwelve, \&c.	1	2	3	4	5	6	7	8	9	10
	10	10	10	10	10	10	10	10	10	10

Example for
reading in Addition.
§ 124. In this example, beginning at the right hand, we say, $8,17,18$, 26 : setting down the 6 and carrying the 2 , we say, $8,13,20,22,29$: setting down the 9 and carrying $\overline{3096}$ the 2 , we say, $9,12,18,22,30$:

878
421 679
354
764 and setting down the 30 , we have the entire sum All exaruples 3096. All the examples in addition may be done so solved. in á similar manner.

Advantages of reading.

1sk. stated.
§ 125. The advantages of this method of reauing over spelling are very great.

1st. The mind acquires ideas more readily through the eye than through either of the other senses. Hence, if the mind be taught to apprehend the result of a combination, by merely seeing its elements, the process of arriving at it is much shorter than when those elements are presented through the instrumentality of sound. Thus, to see 4 and 4 , and think 8 , is a very different thing from saying, four and four are eight. s. stated.

2d. The mind operates with greater rapidity and certainty, the nearer it is brought to the
ideas which it is to apprehend and combine. Therefore, all unnecessary words load it and impede its operations. Hence, to spell when we can read, is to fill the mind with words and sounds, instead of ideas.

3d. All the operations of arithmetic, beyond 34. staterl. the elementary combinations, are performed on paper; and if rapidly and accurately done, must be done through the eye and by reading. Hence the great importance of beginning early with a method which must be acquired before any considerable skill can be attained in the use of figures.
§ 126. It must not be supposed that the reading can be accomplished until the spelling has

Reading comes atcir spelling. first been learned.

In our common language, we first learn the alphabet, then we pronounce each letter in a language. word, and finally, we pronounce the word. We should do the same in the arithmetical reading.

WORDS-SPELLING AND READING IN SUBTRACTION.

§12\%. The processes of spelling and reading same prinel. which we have explained in the addition of numbers, may, with slight modifications, be apple applie1 in Subtrac Lion. plied in subtraction. Thus, if we are to subtract

2 from 5, we say, ordinarily, 2 from 5 leaves 3 ; or 2 from 5 three remains. Now, the word, three, is suggested by the relation in which 2 and 5 stand to each other, and this word may be

Readings in Subtraction explained. read at once. Hence, the reading, in subtrac. tion, is simply naming the word, which expresses the difference between the subtrahend and minuend. Thus, we may read each word of the following one hundred combinations.

READINGS.

One from one, \&c.	1	2	3 1	4 1	5 1	6 1	7	8 1	9 1	$\begin{array}{r} 10 \\ 1 \end{array}$
Two from	2	3	4	5	6	7	8	9	10	11
two, de.	2	2	2	2	2	2	2	2	2	2

Three from three, \&ce.

3	4	5	6	7	8	9	10	11	12
3	3	3	3	3	3	3	3	3	3

4	5	6	7	8	9	10	11	12	13
4	4	4	4	4	4	4	4	4	4

Five from

5	6	7	8	9	10	11	12	13	14
5	5	5	5	5	5	5	5	5	5

$\begin{array}{llllllrrrrr}\text { Six from six, } & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \text { \&ca } & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 0\end{array}$

Soren from	7	8	9	10	11	12	13	14	15	16
serem, \&c.	7	7	7	7	7	7	7	7	7	7

8	9 8	10 8	11 8	12 8	13 8	14	15	16	17	Eight from eights \&c.
9	10	11	12	13	14	15	16	17	18	Nine from nine, \&c.
9	9	9	9	9	9	9	9	9	9	
10	11	12	13	14	15	16	17	18	19	Ten from ten \&c.
10	10	10	10	10	10	10	10	10	10	

§ 128. It should be remarked, that in subtraction, as well as in addition, the spelling of the spelling prewords must necessarily precede their reading. in subtrac The spelling consists in naming the figures with which the operation is performed, the steps of the operation, and the final result. The reading tion. consists in naming the final result only.

SPELLING AND READING IN MULTIPLICATION.

§ 129. Spelling in multiplication is similar to the corresponding process in addition or subtraction. It is simply naming the two elements which produce the product; whilst the reading

Spelling in Multiplication.

Reading. consists in naming only the word which expresses the final result.

In multiplying each number from 1 to 10 by Examples n 2, we usualiy say, two times 1 are 2; two times 2 are 4: two times 3 are 6 ; two times 4 are 8 ; two times 5 are 10 ; two times 6 are 12 ; two
times 7 are 14 ; two times 8 are 16 ; two times in reading. 9 are 18 ; two times 10 are 20. Whereas, we should merely read, and say, $2,4,6,8,10,12$, 14, 16, 18, 20.

In a similar manner we read the entire mustiplication table.

readings.

Once one is
$1, \& c$.
Two times 1
are 2, \&c.

Three times 1 are 3 , \&c.

Four times 1
are $4, \& c$.

Five times 1 are 5, \& c.

Six times 1 are six, \&c.
seven times 1 are 7, \&c.

Eight times 1 are 8 , \&c.
\qquad
$\begin{array}{llllllllllll}12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$ 3
$\begin{array}{llllllllllll}12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$ 4

$$
\begin{array}{llllllllllll}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
& & & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{array}{lllllllllllll}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{lllllllllllll}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{llllllllllll}
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Nine times
 are 9, \&c. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1
 10 | Ten times 1
 are $10,0 c c$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Eleven times
 1 are $11, \& c$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | 11 | |

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | $\left.\begin{array}{c}\text { Twelve timee } \\ 12\end{array}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

speling and reading in division.
$\S 130$. In all the cases of short division, the inShort Drre quotient may be read immediately without nam- $\begin{gathered}\text { sion, we mad } \\ \text { read }\end{gathered}$ ing the process by which it is obtained. Thus, in dividing the following numbers by 2 , we merely read the words below.

2) 4	6	8	10	12	16	18	22
two	three	four	five	six	eight	nine	eleven.

In a similar manner, all the words, expressing In all cascs. the results in short division, may be read.

> READINGS.

| $2) 2$ | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | Two in 2,
 once, \&c. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3)3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | Three in 3,
 once, \&c. |
| 4$) 4$ | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | Four in 4,
 once, \&c. |

UNITS INCREASING BY THE SCALE OF TENS．

The idea of a particular number is complex．
$\S 131$ ．The idea of a particular number is ne－ cessarily complex；for，the mind naturally asks ：

1st．What is the unit or basis of the number？ and，

2d．How many times is the unit or basis taken？

What a fig－ $0 ⿴ 囗 ⿰ 丿 ㇄$
§ 132．A figure indicates how many times a unit is taken．Each of the ten figures，however written，or however placed，always expresses as many units as its name inıports，and no more； nor does the figure itself at all indicate the kind
of unit. Still, every number expressed by one or more figures, has for its base either the abstract unit one, or a denominate unit.* If a denominate unit, its value or kind is pointed out either by our common language, or as we shall presently see, by the place where the figure is written.

The number of units which may be expressed by either of the ten figures, is indicated by the name of the figure. If the figure stands alone, and the unit is not denominated, the basis of the number is the abstract unit 1 .

which is read one ten. Here 1 still expresses one, but it is one ten; that is, a unit ten times as great as the unit 1 ; and this is called a unit of the second order.

Again ; if we write two 0's on the right of 1 , we have
which is read one hundred. Here again, 1 still expresses one, but it is one hundred ; that is, a unit ten times as great as the unit one ten, and a hundred times as great as the unit 1 .

A unit of the third order.
§ 134. If three l's are written by the side of each other, thus \} 111,
laws-when figures are written by the side of each other.

* Section 118.
the ideas, expressed in our common anguage. are these:

First

Second.

ThIrd.

What the language establishes When figures are so written.

1st. That the 1 on the right, will either express a single thing denominated, or the abstract unit one.

2d. That the 1 next to the left expresses 1 ten that is, a unit ten times. as great as the first. 3 d . That the 1 still further to the left expresses 1 hundred; that is, a unit ten times as great as the second, and one hundred times as great as the first; and similarly if there were other places.

When figures are thus written by the side of each other, the arithmetical language establishes a relation between the units of their places: that is, the unit of each place, as we pass from the right hand towards the left, increases according to the scale of tens. Therefore, by a law of the arithmetical language, the place of a figure fixes its unit.

Scale for Numeration.

The units of place determined.

the unit of each place is determined, as well
as the law of change in passing from one place to another. If then, it were required to express a given number of units, of any order, we first select from the arithmetical alphabet the char-

How any number of units may be expressed. acter which designates the number, and then write it in the place corresponding to the order. Thus, to express three millions, we write

$$
3000000 \text {; }
$$

and similarly for all numbers.
§ 135. It should be observed, that a figure A igure has being a character which represents value, can no value in itself. have no value in and of itself. The number of things, which any figure expresses, is determined by its name, as given in the arithmetical alphabet. The kind of thing, or unit of the figure, is How the unit fixed either by naming it, as in the case of a deis determined. nominate number, or by the place which the figure occupies, when written by the side of or over other figures.

The phrase, "local value of a figure," so Flgure, has long in use is, therefore withont long in use, is, therefore, without signification when applied to a figure: the term "local value," being applicable to the unit of the Termapplace, and not to the figure which occupies the $\begin{gathered}\text { plicable to } \\ \text { unit oflac: }\end{gathered}$ place:

[^8]Its denom- ample of a series of denominate units, increasing inations. according to the scale of tens: thus,

How read. may be read 11 thousand 1 hundred and 11 mills; or, 1111 cents and 1 mill; or, 111 dimes 1 cent and 1 mill; or, 11 dollars 1 dime 1 cent and 1 mill; or, 1 eagle 1 dollar 1 dime 1 cent Varionskinds and 1 mill. Thus, we may read the number of Readings. with either of its units as a basis, or we may name them all: thus, 1 eagle, 1 dollar, 1 dime, 1 cent, 1 mill. Generally, in Federal Money, we read in the denominations of dollars, cents, and mills; and should say, 11 dollars 11 cents and 1 mill.

Examples in Reading. Lst. Example. 8 13\%. Examples in reading figures :If we have the figures89 we may read them by their smallest unit, and say eighty-nine ; or, we may say 8 tens and 9 units.
2d. Example. Again, the figures - 567 may be read by the smallest unit; viz. five hundred and sixty-seven; or we may say, 56 tens and 7 units; or, 5 hundreds 6 tens and 7 units.
3d. Example. Again, the number expressed by - 74896
may be read, seventy-four thousand eight hun- Varions readdred and ninety-six. Or, it may be read, 7489 ings of a number. tens and 6 units; or, 748 hundreds 9 tens and 6 units; or, 74 thousands 8 hundreds 9 tens and 6 units; or, 7 ten thousands 4 thousands 8 hundreds 9 tens and 6 units; and we may read in a similar way all other numbers.

Although we should teach all the correct readings of a number, we should not fail to remark that it is generally most convenient in practice to read by the lowest unit of a number. Thus, in the numeration table, we read each period by the lowest unit of that period. For example, in the number

$$
874,967,847,047,
$$

we read 874 billions 967 millions 847 thousands and 47.

UNITS INCREASING ACCORDING TO VARYING SCALES.
§ 138. If we write the well-known signs of the English money, and place 1 under each denomination, we shall have

Now, the signs £.s. d. and f. fix the value of the unit 1 in each denomination; and they also

The best method of reading.

Example.
Each period read by its lowest unit.

What the language expresses.

The units of the places.

How the units increase.
\square
determine the relations which subsist between the different units. For example, this simple language expresses these ideas:

1st. That the unit of the right-hand place is 1 farthing-of the place next to the left, 1 penny -of the next place, 1 shilling-of the next place, 1 pound ; and

2 d . That 4 units of the lowest denomination

Changes in the value of the units.

The units in . 4 roirdupois weight.
make one unit of the next higher; 12 of the second, one of the third; and 20 of the third, one of the fourth.
If we take the denominate numbers of the Avoirdupois weight, we have

$$
\begin{array}{cccccc}
\text { Ton. } & \text { cut. } & q r . & l b . & o z . & d r . \\
1 & 1 & 1 & 1 & 1 & 1 ;
\end{array}
$$

in which the units increase in the following manner : viz. the second unit, counting from the right, is sixteen times as great as the first; the third, sixteen times as great as the second; the fourth; twenty-five times as great as the third ; the fifth, four times as great as the fourth; and the sixth, twenty times as great as the fifth. The scale, therefore, for this class of denominate numbers varies according to the above laws.

If we take any other class of denominate numbers, as the Troy weight, or any of the systems of measures, we shall have different scales for the formation of the different units.

But in all the formations, we shall recognise The method the application of the same general principles. of forming

There are, therefore, two general methods of same for all forming the different systems of integral numbers from the unit one. The first consists in preserving a constant law of relation between the different unities; viz. that their values shall change according to the scale of tens. This gives the system of common numbers.

The second method consists in the application
Second aystem. of known, though varying laws of change in the unities. These changes in the unities produce Change in the the entire system of denominate numbers, each class of which has its appropriate scale, and the changes among the units of the same class are indicated by the different steps of its scale.

INTEGRAL UNITS OF ARITHMETIC.

\S 139. There are eight classes of units-four Eight class. of number, and four of space, viz.

1. Abstract Units;	5. Units of Lines;	Abstract,
2. Units of Currency;	6. Units of Surface;	Currencs,
3. Units of Weight;	\%. Units of Volumes;	Weight,
4. Units of Time;	8. Units of Angles.	Time.

First among the Units of Arithmetic stands the simple or abstract unit 1. This is the base Abstract of all abstract numbers, and becomes the base, bseo.

The basis of denominate

 numbers;Also, the basis of all frac-
tions, whether simpleor denominate.

Minst apprehend the unit.
also, of all denominate numbers, by merely naming, in succession, the particular things to which it is applied.

It is also the basis of all fractions. Merely as the unit 1 , it is a whole which may be divided according to any law, forming every variety of fraction; and if we apply it to a particular thing, the fraction becomes denominate, and we have expressions for all conceivable parts of that thing.
§ 140. It has been remarked* that we can form no distinct apprehension of a number, until we have a clear notion of its unit, and the number of times the unit is taken. The unit is the great basis. The utmost care, therefore,

Let its nature and kind be fully explained;

How for a number expressing currency.

Exhibit the unit if it be of weight; should be taken to impress on the minds of learners, a clear and distinct idea of the actual value of the unit of every number with which they have to do. If it be a number expressing currency, one or more of the coins should be exhibited, and the value dwelt upon; after which. distinct notions of the other units of currency can be acquired by comparison.
If the number be one of weight, some unit should be exhibited, as one pound, or one ounce, and an idea of its weight acquired by actually

[^9]lifting it. This is the only way in whieh we can learn the true signification of the terms.

If the number be one of measure, either And also, if linear, superficial, of volumes or of angles, its measure. unit should also be exhibited, and the signification of the term expressing it, learned in the only way in which it can be learned, through the senses, and by the aid of a sensible object.

UNITED STATES CURRENCY.

§ 141. The currency of the United States is Carrency of ealled United States Currency. Its units are all $\begin{gathered}\text { the United } \\ \text { States. }\end{gathered}$ denominate, being 1 mill, 1 cent, 1 dime, 1 dollar,

1 eagle. The law of change, in passing from one unit to another, is according to the scale of tens.

Law of change in tha unities. Hence, this system of numbers may be treated, in all respects, as simple numbers; and indeed they are such, with the single exception that their units have different names.

They are generally read in the units of dollars, cents, and mills-a period being placed after the figure denoting dollars. Thus,

$$
\$ 864.849
$$

is reau eight hundred and sixty-four dollars, eighty-fou cents, and nine mills; and if there were a figure after the 9 , it would be read in decinals of the mill. The number may, how-

Example.

The number ever, be read in any other unt; as, 864849
read in mills ; or, 86484 cents and 9 mills: or, 8648 dimes, 4 cents, and 9 milis; or, 86 eagles, 4 dollars, 84 cents, and 9 mills; and there are yet several other readings.

ENGLISH MONEY.

Sterling Money. ney, are 1 farthing, 1 penny, 1 shilling, and 1 pound.

Scale of the unities.

How it changes.

The scale of this class of numbers is a varying scale. Its steps, in passing from the unit of the lowest denomination to the highest, are four, twelve, and twenty. For, four farthings make one penny, twelve pence one shilling, and twenty shillings one pound.

AVOIRDUPOIS WEIGHT.

Units in Avoirdupois. are 1 dram, 1 ounce, 1 pound, 1 quarter, 1 hun-dred-weight, and 1 ton.
scale.
The scale of this class of numbers is a varying scale. Its steps, in passing from the unit of the lowest denomination to the highest, are sixteen, sixteen, twenty-five, four, and twenty For, sixteen drams make one ounce, sixteen ounces one pound, twenty-five pounds one quar-
ter, four quarters one hundred, and twenty hundreds one ton.

TROY WEIGHT.

§ 144. The units of the Troy Weight are, 1 Units in grain, 1 pennyweight, 1 ounce, and 1 pound. Weight.

The scale is a varying scale, and its steps, in scale: passing from the unit of the lowest denomina- Its degrees. tion to the highest, are twenty-four, twenty, and twelve.

APOTHECARIES' WEIGHT.
§ 145. The units of this weight are, 1 grain, 1 Unite in Apothecaries' Weight. scruple, 1 dram, 1 ounce, and 1 pound.

The scale is a varying scale. Its steps, in scale: passing from the unit of the lowest denomina- Its degrees. tion to the highest, are twenty, three, eight, and twelve.

> UNITS OF MEASURE OF SPACE.
§ 146. There are four units of measure of Fouranits Space, each differing in kind from the other three. They are, Units of Length, Units of Surface, Units of Volume, and Units of Angular Measure.

UNITS OF LENGTI.

§ 147. The unit of length is used for measur- Units of ing lines, either straight or curred. It is length. ing lines, either straight or curved. It is a

The standard.

What units are taken.

Idea of length.
straight line of a given length, and is often called the standard of the measurement.

The units of length, generally used as standards, are 1 inch, 1 foot, 1 yard, 1 rod, 1 furlong, and 1 mile. The number of times which the unit, used as a standard, is taken, considered in connection with its value, gives the idea of the length of the line measured.

UNITS OF SURFACE.

Units of surface.
§ 148. Units of surface are used for the measurement of the area or contents of whatever has the two dimensions of length and breadth. The

What the unit of surface is. unit of surface is a square described on the unit of length as a side. Thus, if the unit of length be 1 foot, the corre-

1 square foot.

Examples sponding unit of surface will be 1 square foot; that is, a square constructed on 1 foot of length as a side. If the linear unit be 1 yard, the corresponding unit of surface will be 1 square yard. It will be seen from the figure, Square feet
in a
that, although the linear yard quare yarch. contains the linear foot but

Its connection with the unit of length. three times, the square yard
contains the square foot nine times. The square square rod rod or square mile may also be used as the unit square mile. of surface.

The number of times which a surface contairs its unit of measure, is its area or contents ; and

Area or contents of a surface. this number, taken in connection with the value of the unit, gives the idea of its extent.

Besides the units already considered, there is a special class, called

DUODECIMAL UNITS.

§ 149. The duodecimal units are generally used Doodecimal in board and timber measure, though they may be units. used in all measurements of surface and volume. They are simply the units 1 foot, 1 square foot, and 1 cubic foot, divided according to the scale are. of 12 .
§ 150. It is proved in Geometry, that if the What princlnumber of linear units in the base of a rectan- in is proved gle be multiplied by the number of linear units in the breadth, the numerical value of the product will be equal to the number of superficial units in the figure.

Knowing this fact, we often express it by say- How it 18 ex. ing, that "feet multiplied by feet give square feet," and "yards multiplied by yards give square

This a coneise expression. nor yards, yard times, this language, rightly understood, is but a concise form of expression for the principle stated above.

Conclusion

With this understanding of the language, we say, that 1 foot in length multiplied by 1 foot in breadth, gives a square foot; and 4 feet in length multiplied by 3 feet in breadth, gives 12 square feet.

Examples in the multiplication of feet by feet and inches.

Generalization.
luches by inches.
§ 151. If now, 1 foot in length be multiplied by 1 inch $=\frac{1}{12}$ of a foot in breadth, the product will be one-twelfth of a square foot; that is, onetwelfth of the second unit: if it be multiplied by 3 inches, the product will be
three-twelfths of a square foot; and similarly be multiplied by 3 inches, the product will be
three-twelfths of a square foot; and similarly for a multiplier of any number of inches.

If, now, we multiply 1 inch by 1 inch, the yards." But as feet cannot be taken feet times,
 product may be represented by 1 square inch:
How the that is, by one-twelfth of one-twelfth of a square units change, and what they are.

First. foot. Hence, the units of this measure decrease according to the scale of 12 . The units are,

1st. Square feet-arising from multiplying feet by feet.

Scoond.
2 d . Twelfths of square feet-arising from multiplying feet by inches

3d. Twelfths of twelfths-arising from multi- Third. plying inches by inches.

When we introduce the third dimension, height, we have, 1 foot being the unit, $1 \times 1 \times 1=1$ cubic foot; $1 \times 1 \times \frac{1}{12}=\frac{1}{12}$ cubic foot; $1 \times \frac{1}{12} \times$ general. $\frac{1}{12}=\frac{1}{144}$ cubic foot; and $\frac{1}{12} \times \frac{1}{12} \times \frac{1}{12}=\frac{1}{1228}$ cubic foot. Hence, the units change by the scale of 12 .

UNITS OF VOLUME.

§152. It has already been stated, that if length be multiplied by breadth, the product may be represented by units of surface. It is

Units of volume.

What is also proved, in Geometry, that if the length, Geometry in breadth, and height of any regular figure, of a regard to them. square form, be multiplied together, the product may be represented by units of volume

Units of volume. whose number is equal to this product. Each unit is a cube constructed on the linear unit as an edge. Thus, if the linear unit be 1 foot, the Examples. unit of volume will be 1 cubic foot; that is, a cube constructed on 1 foot as an edge; and if it be 1 yard, the unit will be 1 cubic yard.

The three units, viz. the unit of length, the unit of surface, and the unit of volume, are es- $\begin{gathered}\text { nnits essen. } \\ \text { tilly difer- }\end{gathered}$ sentially different in kind. The first is a line ent. of a known length; the second, a square of a what they known side; and the third, a figure, called a

Generally used.

Duodecima sustem. cube, of a known base and height. These are the units used in all kinds of measurementescepting only angles, and the duodecimal system, which has already been explained.

liquid measure.

Vinits of Liquid Meas ure.

Scale.
§ 153. The units of Liquid Measure are, 1 gill, 1 pint, 1 quart, 1 gallon, 1 barrel, 1 hogshead, 1 pipe, 1 tun. The scale is a varying scale. Its steps, in passing from the unit of How it varies. the lowest denomination, are, four, two, four, thirty-one and a half, sixty-three, two, and two.

DRYMEASURE.

Trats of Dry Measure.

Degrees of the scale.
§ 154. The units of this measure are, 1 pint, 1 quart, 1 peck, 1 bushel, and 1 chaldron. The steps of the scale, in passing from units of the lowest denomination, are two, eight, four, and thirty-six.

TIME.

Units of Time.
§ 155. The units of Time are, 1 second, 1 minute, 1 hour, 1 day, 1 week, 1 month, 1 year, and 1 century. The steps of the scale, in passing from units of the lowest denomination to the highest, are sixty, sixty, twenty-four, seren, four, twelve, and one hundred.

ANGGULAR, OR CIRCULAR MEASURE.

§ 156. The units of this measure are, 1 sec- Units of cirond, 1 minute, 1 degree, 1 sign, 1 circle. The cular Meassteps of the scale, in passing from units of the lowest denomination to those of the higher, are sixty, sixty, thirty, and twelve.

advantages of the system of unities.

$\S 15 \%$. It may well be asked, if the method Advantages here adopted, of presenting the elementary prinof the syzuem ciples of arithmetic, has any advantages over those now in general use. It is supposed to possess the following:

Ist. The system of unities teaches an exact ist. Teaches analysis of all numbers, and unfolds to the mind the anslysis the different ways in which they are formed from the unit one, as a basis.

2 d . Such an analysis enables the mind to form $2 d$. Points out a definite and distinct idea of every number, by
their relation: pointing out the relation between it and the unit from which it was derived.

3d. By presenting constantly to the mind the idea of the unit one, as the basis of all numbers, the mind is insensibly led to compare this unit with all the numbers which flow from it, and
then it can the more easily compare those numbers with each other.

4th. Explains more fully the four ground rales.

4th. It affords a more satisfactory analysis, and a better understanding of the four ground rules, and indeed of all the operations of arithmetic, than any other method of presenting the subject.

METRIC, OR FRENCH SYSTEM OF WEIGHTS AND MEASURES.

Primary baee of spatem.
\S 158. The primary base, in this system, for all denominations of weights and measures, is the one-ten-millionth part of the distance from the equator to the pole, measured on the earth's surface. It is called a Metre, and is equal to 39.37 inches, very nearly.

The change from the base, in all the denom-
scale. inations, is according to the decimal scale of tens: that is, the units increase ten times, at each step, in the ascending scale, and decrease ten times, at each step, in the descending scale.

MEASURES OF LENGTH.

Base, 1 metre $=39.37$ inches, nearly.

TABLE.

The names, in the ascending scale, are formed

Names in the scale. by prefixing to the base, Metre, the words, Deca (ten), Hecto (one hundred), Kilo (one thousand), Myria (ten thousand), from the Greek numerals; and in the descending scale, by prefixing Deci (tenth), Centi (hundredth), Mili (thousandth), from the Latin numerals.

SQUARE MEASURE.
Base, 1 Are $=$ the square whose side is 10 metres.
$=119.6$ square yards, nearly.
$=4$ perches, or square rods, nearly.
The unit of surface is a square whose side is 10 metres. It is called an Are, and is equal to 101) square metres.

MEASURE OF VOLUMES.
Base, 1 Litre = the cube on the decimetre.
$=61.023378$ cubic inches.
$=$ a little more thau a wine quart

The unit for the measure of volume is the cube whose edge is one-tenth of the metrethat is, a cube whose edge is 3.93% inches. This cube is called a Litre, and is one-thousandth part of the cube constructed on the metre, as an edge.

FOUR GROUND RULES.

System applied in addition.

Examples.

Process of performing addition. principle.
\S 159. Let us take the two following examples in Addition, the one in simple and the other in denominate numbers, and then analyze the process of finding the sum in each.

simple numbers.	denominate numbers.				
$8^{\prime} 4198$	cwt.	$q r$.	lb.	oz.	$d r$.
36984	3	3	24	15	14
3641	6	3	23	14	8
914823	10	3	23	14	6

In both examples we begin by adding the units of the lowest denomination, and then, we divide their sum by so many as make one of the denomination next higher. We then set down the remainder, and add the quotient to the units: of that denomination. Haring done this, we apply a similar process to all the other denomina-tions-the principle being precisely the same in both examples. We see, in these examples, an
illustration of a general principle of addition, Cnits of the riz. that units of the same kind are always added $\begin{gathered}\text { same kind } \\ \text { unite. }\end{gathered}$ together.
§ 160. Let us take two similar examples in system Subtraction.
applied in subtraction.

In both examples we begin with the units of The method the lowest denomination, and as the number in of performthe subtrahend is greater than in the place directly abore, we suppose so many to be added in the minuend as make one unit of the next higher denomination. We then make the subtraction, and add 1 to the units of the subtrahend next higher, and proceed in a similar manner, through all the denominations. It is plain that the principle employed is the same in both exam- Principle the ples. Also, that units of any denomination in $\begin{gathered}\text { same for all } \\ \text { examples. }\end{gathered}$ the subtrahend are taken from those of the same denomination in the minuend.
§ 161. Let us now take similar examples in Maltiplican Multiplication.

Examples.	EIMPLE NUMBERE 87464 5	denominate numbere.				
		$\begin{aligned} & \text { It } \\ & 9 \end{aligned}$	3	6	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$g r$.
						15
	$\underline{437320}$					5
		48	3	2	1	15

Method of performing the examples.

The principle the same for all examples.

Division.
In these examples we see, that we multiply, in succession, each order of units in the multiplicand by the multiplier, and that we carry from one product to another, one for every so many as make one unit of the next higher denomination. The principle of the process is therefore the same in both examples.
§ 162. Finally, let us take two similar examples in Division.

We begin, in both examples, by dividing the units of the highest denomination. The unit of the quotient figure is the same as that of the dividend. We write this figure in its place, and then reduce the remainder to units of the next lower denomination. We then add in that denomination, and continue the division through all the denominations to the last-the principle being precisely the same in both examples.

SECTION II.

FRAOTIONAL UNITS.

FRACTIONAL UNITS.-SCALE OF TENS.

§ 163. IF the unit 1 be divided into ten equal Fraction one parts, each part is called one tenth. If one of $\begin{gathered}\text { tenth } \\ \text { defined; }\end{gathered}$ these tenths be divided into ten equal parts, each part is called one hundredth. If one of the hundredth; hundredths be divided into ten equal parts, each part is called one thousandth; and corresponding thousandth. names are given to similar parts, how far soever Generalizothe divisions may be carried.

Now, although the tenths which arise from Fractions ano dividing the unit 1 , are but equal parts of 1 , $\begin{gathered}\text { Whole } \\ \text { things. }\end{gathered}$ they are, nevertheless, whole tenths, and in this light may be regarded as units.

To avoid confusion, in the use of terms, we shall call every equal part of 1 a fractional unit.

Fractional units. Hence, tenths, hundredths, thousandths, tenths of thousandths, \&c., are fractional units, each having a fixed relation to the unit 1 , from which it was derived.

Fractional units of the first order; second order, \&ec.
§ 164. Adopting a similar language to that used in integral numbers, we call the tenths, fractional units of the first order; the hundredths, fractional units of the second order; the thousandths, fractional units of the third order ; and so on for the subsequent divisions.

Is there any arithmetical language by which
Language for these fractional units may be expressed? The decimal point, which is merely a dot, or period, Whatitixes indicates the division of the unit 1 , according to the scale of tens. By the arithmetical language, Kames of the the unit of the place next the point, on the right, places. is 1 tenth; that of the second place, 1 hundredth; that of the third, 1 thousandth; that of the fourth, 1 ten thousandth; and so on for places still to the right.
scale . The scale for decimals, therefore, is

$$
.111111111, \& c . ;
$$

in which the value of the unit of each place is known as soon as we have learned the signification of the language.

If, therefore, we wish to express any of the parts into which the unit 1 may be divided, ac-

Any decimal cording to the scale of tens, we have simply to select from the alphabet, the figure that will be expressed by thle scale.
the place corresponding to the order of the unit. Thus, to express four tenths, three thousandths,

Where any figure is written. eight ten-thousandths, and six millionths, we write

$$
.403806 ;
$$

Example.
and similarly, for any decimal which can be named.
\S 165. It should be observed that while the units of place decrease, according to the scale of tens, from left to right, they increase according Theunits in to the same scale, from right to left. This is the right tolert. sume law of increase as that which connects the units of place in simple numbers. Hence, simple consequence numbers and decimals being formed according to the same law, may be written by the side of each other and treated as a single number, by merely preserving the separating or decimal point. Thus, 8974 and .67046 may be written

$$
8974.67046 \text {; }
$$

Example.
since ten units, in the place of tenths, make the uni one in the place next to the left.

FRACTIONALUNITSINGRNERAL.

§ 166. If the unit 1 be divided into two equal a hals parts, each part is called a half. If it be divided

A third. into three equal parts, each part is called a third: if it be divided into four equal parts, each part is
A fourth. called a fourth : if into five equal parts, each A anh. part is called a fifth; and if into any number of equal parts, a name is given corresponding to the number of parts.

These units are whole things.

Examples.

Have a relation to unity.

Now, although these halves, thirds, fourths, fifths, \&c., are each but parts of the unit 1, they are, nevertheless, in themselves, whole things. That is, a half is a whole half; a third, a whole third; a fourth, a whole fourth; and the same for any other equal part of 1 . In this sense, therefore, they are units, and we call them fractional units. Each is an exact part of the unit 1, and has a fixed relation to it.
§ 16\%. Is there any arithmetical language by which these fractional units can be expressed?

Language for fractions.
express the number of equal parts.

The bar, written at the right, is the sign which denotes the division of the urit 1 into any number of equal parts.

If we wish te express the number of equal parts into which it is divided, as 9 . for example, we simply write the 9 under $\overline{9}$ the bar, and then the phrase means, that some thing regarded as a whole, has been divided intu 9 equal parts.

If, nuw, we wish to express any number of these fractional units, as 7 , for example, we place the 7 above the line, and read, seven ninths.
8168. It was observed,* that two things are necessary to the clear apprehension of an integral number.

1st. A distinct apprehension of the unit which Firsh. forms the basis of the number; and,

2 dly . A distinct apprehension of the number second of times which that unit is taken.

Three things are necessary to the distinct ap- Three things prehension of the value of any fraction, either nepprehend a decimal or vulgar.

1st. We must know the unit, or whole thing, First. from which the fraction was derived;

2 d . We must know into how many equal parts second. that unit is divided; and,

3dly. We must know how many such parts Third are taken in the expression.

The unit from which the fraction is derived, Unit of thu is called the unit of the fraction; and one of the expree the equal parts is called, the fractional unit.

For example, to apprehend the ralue of the

[^10]What we must know.

First
fraction $\frac{3}{7}$ of a pound avoirdupois, or $\frac{3}{7} l b$.; we must know,

Second. Third.

Unit when not named.

Firk

The \square

1st. What is meant by a pound;
2d. That it has been divided into seven equas parts; and,

3d. That three of those parts are taken.
In the above fraction, 1 pound is the unit of the fraction; one-seventh of a pound, the fractional unit; and 3 denotes that three fractional units are taken.
If the unit of a fraction be not named, it is taken to be the abstract unit 1 .

ADVANTAGES OF FRACTIONAL UNITS.

Every equal part of one, a
unit. ty as a unit in itself, having a certain relation to the unit 1 , the mind is led to analyze a fraction, and thus to apprehend its precise signification.

Under this searching analysis, the mind at once seizes on the unit of the fraction as the principal base. It then looks at the value of each part. It then inquires how many such parts are taken.
It having been shown that equal integral units whether intcgral or frac-
§ 169. By considering every equal part of uniof the analyzis.
same principle is equally applicable to fractional units; and then the inquiry is made: What is necessary in order to make such units equal?

It is seen at once, that two things are necessary :

Ist. That they be parts of the same unit ; and,
2d. That they be like parts; in otner words, they must be of the same denomination, and have a common denominator.

In regard to Decimal Fractions, all that is necessary, is to observe that units of the same value are added to each other, and when the figures expressing them are written down, they should always be placed in the same column.
§ 170. The great difficulty in the management of fractions, consists in comparing them with each other, instead of constantly comparing them with the unit from which they are derived. By considering them as entire things, having a fixed relation to the unit which is their base, they can be compared as readily as integral numbers; for, the mind is never at a loss when it apprebends the unit, the parts into which it is Reasons fot divided, and the number of parts which are greater sim: taken. The only reasons why we apprehend and integers.
tional, can alone be added.

Two things necessary for addition.

First.
Second.

Decimal Fractions.

Difficulty in the management of frac tions

How obvisted.
handle integral numbers more readily than fractions, are,

First.
second.
1st. Because the unit forming the base is always kept in view; and,
2d. Because, in integral numbers, we have been taught to trace constantly the connection between the unit and the numbers which come from it; while in the methods of treating fractions, these important considerations have been neglected.

SECTION III.

PROPORTION AND RATIO.

Proportion defined.
§ 171. Proportion expresses the relation which one number bears to another, with respect to its being greater or less.

Two ways of comparing.

1st method.
Two numbers may be compared, the one with the other, in two ways :

1st. With respect to their difference, called Arithmetical Proportion; and,
2d method.
2d. With respect to their quotient, called Geometrical Proportion.

Thus, if we compare the numbers 1 and 8 , by their difference, we find that the second exceeds the first by 7 : hence, their difference 7, is the measure of their arithmetical proportion, and is called, in the old books, their arithmetical Arithmetical Ratio. ratio.

If we compare the same numbers by their quotient, we find that the second contains the first 8 times: hence, 8 is the measure of their geometrical proportion, and is called their geometrical ratio.*
§ 172. The two numbers which are thus compared, are called terms. The first is called the antecedent, and the second the consequent.

In comparing numbers with respect to their
Terms.
Antecedent. Consequent.

Comparison by differenca difference, the question is, how much is one greater than the other? Their difference affords the true answer, and is the measure of their proportion.

In comparing numbers with respect to their quotient, the question is, how many times is one greater or less than the other? Their quotient or ratio, is the true answer, and is the measure

[^11]Exampla by of their proportion. Ten, for example, is $\mathbf{9}$ difference. greater than 1 , if we compare the numbers one and ten by their difference. But if we compare By quotient them by their quotient, ten is said to be ten "Ten times." times as great-the language "ten times" having reference to the quotient, which is always taken as the measure of the relative value of two Examples of numbers so compared. Thus, when we say, this use of the term. that, the units of our common system of numbers increase in a tenfold ratio, we mean that they so increase that each succeeding unit shall contain the preceding one ten times. This is a convenient language to express a particular relation of two numbers, and is perfectly correct, when used in conformity to an accurate definition.

In what all authors agree:
Convenient language. -

This leads us to inquire, whether the mind fixes most readily on the first or second number as a standard; that is, whether its tendency is to regard the second number as arising from the first, or the first as arising from the second.
§ 174. All our ideas of numbers begin at one.* This is the starting-point. We conceive of a number only by measuring it with How we con one, as a standard. One is primarily in the mind before we acquire an idea of any other number. Hence, then, the comparison begins at one, which is the standard or unit, and all other numbers are measured by it. When, therefore, we inquire what is the relation of one to any other number, as eight, the idea presented is, how many times does eight contain the standard?

We measure by this standard, and the ratio is the result of the measurement. In this view of the case, the standard should be the first number named, and the ratio, the quotient of the second number divided by the first. Thus, the ratio of 2 to 6 would be expressed by 3 , three being the Exampla, number of times which 6 contains 2 .

[^12]Other reasons for this method of comoarison.

Comparison of unity with fractions.
§ 175. The reason for adopting this method of comparison will appear still stronger, if we take fractional numbers. Thus, if we seek the relation between ont and one-half, the mind immediately looks to the part which one-half is of one, and this is determined by dividing one-half by 1 ; that is, by dividing the second by the first: whereas, if we adopt the other method, we divide our standard, and find a quotient 2 .

Geometrical proportion. while the term "geometrical proportion" is used to express the relation of two numbers, comA geometrical proportion defined.

Example. pared by their ratio, the term, "A geometrical proportion," is applied to four numbers, in which the ratio of the first to the second is the same as that of the third to the fourth. Thus,

$$
2: 4:: 6: 12
$$

is a geometrical proportion, of which the ratio is 2 .

Further advantages.

Questions in the Rule of Threo
§ 17%. We will now state some further advantages which result from regarding the ratio as the quotient of the second term divided by the first.

Every question in the Rule of Three is a geometrical proportion, excepting only, that the
last term is wanting. When that term is found, Their nature. the geometrical proportion becomes complete. In all such proportions, the first term is used as the divisor. Further, for every question in the Rule of Three, we have this clear and simple solution: viz. that, the unknown term or an- How soivel. swer, is equal to the third term multiplied by the ratio of the first two. This simple rule, for finding the fourth term, cannot be given, unless we define ratio to be the quotient of the second term divided by the first. Convenience, therefore, as well as general analogy, indicates this as the proper definition of the term ratio.
§ 178. Again, all authors, so far as I have This definiconsulted them, are uniform in their definition of the ratio of a geometrical progression : .viz. that it is the quotient which arises from dividing the second term by the first, or any other term by the preceding one. For example, in the progression

$$
2: 4: 8: 16: 32: 64, \& c .
$$

all concur that the ratio is 2 ; that is, that it is the quotient which arises from dividing the second term by the first: or any other term by the preceding term. But a geometrical progression differs from a geometrical proportion only in

Example:
in which they all ugree.

- tion of ratio is used by all authors, in one case:

The same should take place in every proportion: for they are all the same.
this: in the former, the ratio of any two terms is the same; while in the latter, the ratio of tue first and second is different from that of the second and third. There is, therefore, no essential difference in the two proportions.

Why, then, should we say that in the proportion

$$
2: 4:: 6: 12,
$$

the ratio is the quotient of the first term divided

Examples.

Wherein authors have departed from their defnitions:

How used ratio.

Other inotances in which the defnition of by the second; while in the progression

$$
2: 4: 8: 16: 32: 64,8 c .
$$

the ratio is defined to be the quotient of the second term divided by the first, or of any term divided by the preceding term?

As far as I have examined, all the authors who have defined the ratio of two numbers to be the quotient of the first divided by the second, have departed from that definition in the case of a geometrical progression. They have there used the word ratio, to express the quotient of the second term divided by the first, and this without any explanation of a change in the definition.

Most of them have also departed from thein definition, in informing us that " numbers increase from right to left in a tenfold ratio," in
which the term ratio is used to denote the quotient of the second number divided by the first. The definition of ratio is thus departed from, and the idea of it becomes confused. Such

Consequendiscrepancies cannot but introduce confusion into the minds of learners. The same term should always be used in the same sense, and have but a single signification. Science does whatsciencs not permit the slightest departure from this rule. I have, therefore, adopted but a single signification of ratio, and have chosen that one to which all authors, so far as I know, have given their sanction; although some, it is true, have also used it in a different sense.
§ 179. One important remark on the subject of proportion is yet to be made. It is this :
Any two numbers which are compared together, either by their difference or quotient, must be of the same kind: that is, they must either have the same unit, as a base, or be susceptible of reduction to the same unit.

For example, we can compare 2 pounds with 6 pounds : their difference is 4 pounds, and their ratio is the abstract number 3 . We can also compare 2 feet with 8 yards: for, although the unit 1 foot is different from the unit 1 yard, still 8 yards are equal to 24 feet. Hence, the differ-

Important Remark.

Number compared must be of the same kind.

Examples relating tc Arithmeticis and Geometrical Propir tion.
ence of the numbers is 22 feet, and their ratio the abstract number 12 .

Numbers with different units caunot be compared.

On the other hand, we cannot compare 2 dollars with 2 yards of cloth, for they are quantities of different kinds, not being susceptible of reduction to a common unit.
Abstract Abstract numbers may always be compared, numbers may becompared. since they have a common unit 1 .

SECTION IV.
applications of the science of arithmetri.
§ 180. Arithmetic is both a science and an
Arithmetic: art. It is a science in all that relates to the In what a science. properties, laws, and proportions of numbers. The science is a collection of those connected

Science defined. processes which develop and make known the laws that regulate and govern all the operations performed on numbers.

What the sclence performs.
§ 181. Arithmetic is an art, in this: the science lays open the properties and laws of numbers. and furnishes certain principles from which
practical and useful rules are formed, applicable in the mechanic arts and in business transactions. The art of Arithmetic consists in the in what the judicious and skiful application of the princiart comsiston ples of the science; and the rules contain the directions for such application.
§ 182. In explaining the science of Arithmetic, In explainng great care should be taken that the analysis of what necessar every question, and the reasoning by which the principles are proved, be made according to the strictest rules of mathematical logic.

Every principle should be laid down and explained, not only with reference to its subsequent use and application in arithmetic, but also, with reference to its connection with the entire mathematical science-of which, arithmetic is the elementary branch.
§ 183. That analysis of questions, therefore, where cost is compared with quantity, or quan-

What questions aro faulty. tity with cost, and which leads the mind of the learner to suppose that a ratio exists between quantities that have not a common unit, is, without explanation, certainly faulty as a process of science.

For example : if two yards of cloth cost 4 dollars, what will 6 yards cost at the some rate?

Analysis: Analysis.-Two yards of cloth will cost twice as much as 1 yard: therefore, if two yards of cloth cost 4 dollars, 1 yard will cost 2 dollars. Again : if 1 yard of cloth cost 2 dollars, 6 yards, being six times as much, will cost six times two dollars, or 12 dollars.

Satisfactory to a child.

Now, this analysis is perfectly satisfactory to a child. He perceives a certain relation between 2 yards and 4 dollars, and between 6 yards and 12 dollars: indeed, in his mind, he compares these numbers together, and is perfectly satisfied with the result of the comparison.

Advancing in his mathematical course, however, he soon comes to the subject of proportions, treated as a science. He there finds,

Reason why it is defective. greatly to his surprise, that he cannot compare together numbers which have different units; and that his antecedent and consequent must be of the same kind. He thus learns that the whole system of analysis, based on the above method of comparison, is not in accordance with the principles of science.

True analysis:

More scientiflc.

What, then, is the true analysis? It is this: 6 yards of cloth being 3 times as great as 2 yards, will cost three times as much : but 2 yards cost 4 dollars; hence, 6 yards will cost 3 times 4 , or 12 dollars. If this last analysis be not as simple as the first, it is certainly mote strictly
scientific; and when once learned, can be ap-

Its advantages. plied through the whole range of mathematical science.
\S 184. There is yet another view of this question which removes, to a great degree, if not

Reasons in favor of the first analysis entirely, the objections to the first analysis. It is this :

The proportion between 1 yard of cloth and its cost, two dollars, cannot, it is true, as the units are now expressed, be measured by a ratio, according to the mathematical definition of a ratio. Still, however, between 1 and 2, regarded as abstract numbers, there is the same relation existing as between the numbers 6 and 12 , also regarded as abstract. Now, by leaving out of view, for a moment, the units of the numbers, and finding 12 as an abstract number, and then assigning to it its proper unit, we have a correct analysis, as well as a correct result.
$\S 185$. It should be borne in mind, that practical arithmetic, or arithmetic as an art, selects from all the principles of the science, the materials for the construction of its rules and the proofs of its methods. As a mere branch of practical knowledge, it cares nothing about the forms or methods of investigation-it demands

How the

 rules of arith metic are formed.What practical knowledge demands.
the fruits of them all, in the most concentrated
Bext rule of ar and practical form. Hence, the best rule of art, which is the one most easily applied, and which reaches the result by the shortest process, is not always constructed after those methods which science employs in the derelopment of its principles.

Deflnition of muluiplice tion.

What is domands.

Pirk

Bocond

May be differembly convidered as furnimhing a rule of ar

For example, the definition of multiplication 15 , that it is the process of taking one number, called the multiplicand, as many times as there are units in another called the multiplier. This definition, as one of science, requires two things.
lst. That the multiplier be an abstract number; and,

2 dly . That the product be a quantity of the same kind as the multiplicand.

These two principles are certainly correct, and relating to arithmetic as a science, are universally true. But are they universally true, in the sense in which they would be understood by learners, when applied to arithmetic as a mixed subject, that is, a science and an art? Such an application would certainly exclude a large class of practival rules, which are used in the applications of arithmetic, without reference to particular units.

Examplet of

 such applicatione multiplied by feet in height, we must exclude thequestion as one to which arithmetic is not applicable; or else we must multiply, as indeed we do, without reference to the unit, and then assign a proper unit to the product.

If we have a product arising from the three factors of length, breadth, and thickness, the

When the three factors are lines. unit of the first product and the unit of the final product, will not only be different from each other, but both of them will be different from the unit of the given numbers. The unit of the The differen given numbers will be a unit of length, the unit of the first product will be a square, and that of the final product, a cube.
\S 186. Again, if we wish to find, by the best

Other examples. practical rule, the cost of 467 feet of boards at 30 cents per foot, we should multiply 467 by 30 , and declare the cost to be 14010 cents, or \$140.10.

Now, as a question of science, if you ask, can we multiply feet by cents? we answer, certainly ${ }^{\text {as a question }}$ not. If you again ask, is the result obtained right? we answer, yes. If you ask for the analysys, we give you the following:

1 foot of boards : 467 feet : : 30 cents : Answer.
Now, the ratio of 1 foot to 467 feet, is the ab Ratio stract number 467 ; and 30 cents being multi-

Product of two numbers.
plied by this number, gives for the product 14010 cents. But as the product of two numbers is numerically the same, whichever number be used as the multiplier, we know that 467 multiplied by 30 , gives the same number of units as 30 multiThe first rule plied by 467 : hence, the first rule for finding the correct. amount is correct.

Scientific investigation:

Practica rule:
§ 18\%. I have given these illustrations to point out the difference between a process of scientific investigation and a practical rule.

The first should always present the ideas of

Their difference: in what it coneists. the subject in their natural order and connection, while the other should point out the best way of obtaining a desired result. In the latter, the steps of the process may not conform to the order necessary for the investigation of principles; but the correctness of the result must be susceptible of rigorous proof. Much needless and unprofitable discussion has arisen on many of the processes of arithmetic, from confounding a principle of science with a rule of mere application.

SECTION

METHODS OF TEACHING ARITHMETIC CONSIDERED.

ORDER OF THE SUBJECTS

§ 188. IT has been well remarked by Cousin, the great French philosopher, that "As is the method of a philosopher, so will be his system; and the adoption of a method decides the destiny of a philosophy."

What is said here of philosophy in general, is eminently true of the philosophy of mathematical science; and there is no branch of it to which the remark applies, with greater force, than to that of arithmetic. It is here, that the first notions of mathematical science are acquired. It is here, that the mind wakes up, as it were, to the consciousness of its reasoning powers Here, it acquires the first knowledge of the abstractseparates, for the first time, the pure ideal from the actual, and begins to reflect and reason on pure mental conceptions. It is, therefore, of the highest importance that these first thoughts be impressed on the mind in their natural and proper

Cousin.

Method decides Philosophy

True in science.

Why
important in Arithmetic.

First
therghts should the righly impressed.

Faculties to be cultivated.
order, so as to strengthen and cultivate, at the same time, the faculties of apprehension, discrimination, and comparison, and also improve the yet higher faculty of logical deduction.

First point:
method of presenting the subject.

Laws of science: what do they require?
§ 189. The first point, then, in framing a course of arithmetical instruction, is to determine the method of presenting the subject. Is there any thing in the nature of the subject itself, or the connection of its parts, that points out the order in which these parts should be studied? Do the laws of science demand a particular order; or are the parts so loosely connected, as to render it a matter of indifference where we begin and where we end? A review of the analysis of the subject will aid us in this inquiry.

Hasis of the science of numbers.

In what the science consists.
§ 190. We have seen* that the science of numbers is based on the unit 1 . Indeed, the whole science consists in developing, explaining, and illustrating the laws by which, and through which, we operate on this unit. There Four clasees are fuur classes of operatious performed on the of operations. unit one.

[^13]1st. To increase it according to the scale

[^14]of tens forming the system of common numbers.

2d. To divide it, in any way we please, forming the decimal and vulgar fractions.

3d. To increase it according to the vary- 3a. To ining scales, forming all the denominate numcrease. bers.

4th. To compare it with all the numbers which 4th. To com. come from it; and then those numbers with each pare it. other. This embraces proportions, of which the Rule of Three is the principal branch.

There is yet a fourth branch of arithmetic; Fourth viz. the application of the principles and of the rules drawn from them, in the mechanic arts Practical ap. and in the ordinary transactions of business. ${ }^{\text {plications; }}$ This is called the Art, or practical part, of these the Arithmetic. (See Arithmetical Diagram facing art. page 119.)

INTEGRAL UNITS.

§ 191. We begin first with the unit 1 , and Unitone increase it according to the scale of tens, form- according to ing the common system of integral numbers We the scale of then perform on these numbers the operations of the five ground rules; viz. numerate them, Operations add them, subtract them, multiply and divide performed. them.

FRACTIONAL UNITS.

§ 192. We next pass to the second class of Divisions of operations on the unit 1 ; viz. the divisions of it.
the unit. General method. Here we pursue the most general method, and first divide it arbitrarily; that is, into any number of equal parts. We then observe that the Method ac- division of it, according to the scale of tens, is cording to scale of tens. sion. We then perform on all the fractional units which thus arise, every operation of the five ground rules.

DENOMINATE UNITS.

§ 193. Having operated on the abstract unit 1. by the processes of augmentrinor and division,
Next in- we next increase it according to the varying crease it according to varying scales.

Reasons for placing fractions.
scales of the denominate numbers, asd thus produce the system, called Denominate or Concrete Numbers; after which, we perform on this class of numbers all the operations of the five ground rules.

By placing the subject of fractions directly after the five ground rules, the two opposite operations of aggregation and division are brought into direct contrast with each other. It is thus seen, that the laws of change, in the two systems oi operation on the unit 1 , are the same with very slight modifications.

This system of classification, has, after experience, been found to be the best for instruction.

RATIO, OR RULE OF THREE.

194. Having considered the two subjects of

Subjects considered. integral and fractional units, we come next to the comparison of numbers with each other.

This branch of arithmetic develops all the relative properties of numbers, resulting from

What this branch develops. their inequality.

The method of arrangement, indicated above. What the ax presents all the operations of arithmetic in conrangement does. nection with the unit 1 , which certainly forms the basis of the arithmetical science.

Besides, this arrangement draws a broad line what it doe between the science of arithmetic and its applications; a distinction which it is very important to make. The separation of the principles of a science from their applications, so that the learner shall clearly perceive what is theory and what practice, is of the highest importance. Teaching things separately, teaching Golden rules them well, and pointing out their connections, are the golden rules of all successful instruction.
$\S 195$. I had supposed, that the place of the

Rule of Three, among the branches of arithmetic, had been fixed long since. But several Dilterencess in authors of late, have placed most of the practiarrangement; cal subjects before this rule-giving precedence, for example, to the subjects of Percentage, InIn what they terest, Discount, Insurance, \&c. It is not easy consis: to discover the motive of this change. It is Ratio part of certain that the proportion and ratio of numthe science.

Should precede applications.

Cannot well change the order.

Advantages of first explaining the Rule of Three. bers are parts of the science of arithmetic; and the properties of numbers which they unfold, are indispensably necessary to a clear apprehension of the principles from which the practical rules are constructed.

We may, it is true, explain each example in Percentage, Interest, Discount, Insurance, \&c., by a separate analysis. But this is a matter of much labor; and besides, does not conduct the mind to any general principle, on which all the operations depend. Whereas, if the Rule of Three be explained, before entering on the practical subjects, it is a great aid and a powerful auxiliary in explaining and establishing all the practical rules. If the Rule of Three is to be learned at all, should it not rather precede than follow its applications? It is a great point, in instruction, to lay down a gen-

The great principle of instruction. eral principle, as early as possible, and then connect with it all subordinate operations.

ARITHMETICAL LANGUAGE.

§ 196. We have seen that the arithmetical al- Arithmetical phabet contains ten characters.* From these elements the entire language is formed; and we now propose to show in how simple a manner.

The names of the ten characters are the first Names of the ten words of the language. If the unit 1 be
added to each of the numbers from 0 to 9 inclusive, we find the first ten combinations in

First ten combinations. arithmetic. \dagger If 2 be added, in like manner, we have the second ten combinations; adding 3 , gives us the third ten combinations; and so on, until we have reached one hundred combinations (page 123).

Now, as we progressed, each set of combina- Each set givtions introduced one additional word, and the ing one addiresults of all the combinations are expressed by the words from two to twenty inclusive.
$\S 19 \%$. These one hundred elementary com- All that need be committed to memory. memory; for, every other is deduced from them. They are, in fact, but different spellings of the first nineteen words which follow one. If we extend the words to one hundred, and recollect that

[^15]at one hundred, we begin to repeat the numbers,

Words to be remembered for addition.

Only ten words primitive.

Subtraction:

Sumber of words.

Multiplication:

Number of words.

Number of words.

Four hundred and ighty-eight elementary combinations. Words used: 19 in addi-
tion, 10 in subtrac tion,
59 in multiplication, we see that we have but one hundred words to be remembered for addition; and of these, all above ten are derivative. To this number, must of course be added the few words which express the sums of the hundreds, thousands, \&cc.
§ 198. In Subtraction, we also find one hundred elementary combinations; the results of which are to be read.* These results, and all the numbers employed in obtaining them, are expressed by twenty words.
§ 199. In Multiplication (the table being carried to twelve), we have one hundred and fortyfour elementary combinations, \dagger and fifty-nine separate words (already known) to express the results of these combinations.
§ 200. In Division, also, we have one hundred and forty-four elementary combinations, \ddagger but use only twelve words to express their results.
§ 201. Thus, we have four hundred and eigh-ty-eight elementary combinations. The results of these combinations are expressed by one hurdred words; viz. nineteen in addition, ten in subtraction, fifty-nine in multiplication, and twelve

[^16]in division. Of the nineteen wards which are 12 in division employed to express the results of the combinations in addition, eight are again used to express similar results in subtraction. Of the fifty-nine which express the results of the combinations in multiplication, sixteen had been used to express similar results in addition, and one in subtraction; and the entire twelve, which ex$i^{\text {ress }}$ the results of the combinations in division, had been used to express results of previous combinations. Hence, the results of all the elementary combinations, in the four ground rules, are expressed by sixty-three different words; and they are the only words employed to translate

Sixty-three different words in all these results from the arithmetical into our common language.

The language for fractional units is similar in every particular. By means of a language the samefor thus formed we deduce every principle in the science of numbers.
§ 202. Expressing these ideas and their combinations by figures, gives rise to the language of arithmetic. By the aid of this language we not only unfold the principles of the science, tis value and but are enabled to apply these principles to every question of a practical nature, involving the use of figures.

Bus ambiamives
-lica stange the Sismifertion chle tears

S? 203. There is but one further idea to be presented: it is this,-that there are very few combinations made among the figures, which change, at all, their signification.

Selecting any two of the figures, as $\mathbf{3}$ and $\mathbf{5}$,

Byarilis

 for example, we see at once that there are but three wars of writing them, that will at all change their signification.Fiss: First, write them br the side of each
other $\ldots \ldots$. $\quad \begin{aligned} & 3 \\ & 53 .\end{aligned}$
Soond: Second, write them, the one over
the other $\begin{aligned} & \frac{3}{5}, \\ & \frac{3}{3}\end{aligned}$
nim Thind, place a decimal point before $\begin{aligned} & \text {.3, } \\ & \text { each }\end{aligned}$
Now, each manner of writing gives a different signification to both the figures. Use, how-
tense ever, has established that signification, and we $-\infty$ know it, as soon as we have learned the language.

We have thus explained what we mean by the arithmetical language. Its grammar em*pmer: braces the names of its elementary signs, or Athine- Alphabet, - the formation and number of its
wonds-and the laws by which figures are connected for the parpose of expressing ideas. We jeel that there is simplicity and keauty in this system. and hope it may be usefol.
§ 204. The principles of every science are a collection of mental processes, having established connections with each other. In every branch of mathematics, the Definitions and Terms give form to, and are the signs of, certain elementary ideas, which are the basis of the science. Between any term and the idea which it is employed to express, the connection should be so intimate, that the one will always suggest the other.

These definitions and terms, when their significations are once fixed, must always be used in the same sense. The necessity of this is most urgent. For, "in the whole range of arithmetical science there is no logical test of truth, but in a cunformity of the reasoning to the definitions nd terms, or to such principles as have been established from them."
§ 205. With these principles, as guides, we propose to examine some of the definitions and

Definitions and terms examined. terms which have, heretofore, formed the basis of the arithmetical science. We shall not confine our quotations to a single author, and shall make only those which fairly exhibit the general use of the terms

It is said,

Number de fined.

How expressed.

Names of the characters.

Figures have values.

Number rightly defined:
" Number signifies a unit, or a collection of units."
"The common method of expressing numbers is by the Arabic Notation. The Arabic method employs the following ten characters, or figures." \&c.
"The first nine are called significant figures, because each one always has a value, or denotes some number."

And a little further on we have,
"The different values which figures have, are called simple and local values."

The definition of Number is clear and correct. It is a general term, comprehending al. the phrases which are used, to express, either separately or in connection, one or more things Also Igures. of the same kind. So, likewise, the definition of figures, that they are characters, is also right.

Deflinition departed from.
 parted from. The reason given why nine of the figures are called significant is, because "each one always has a value, or denotes some number." This brings us directly to the question,

Hus a flgure value \% whether a figure has a value; or, whether it is

It is merely a character: a mere representative of value. Is it a number or a character to represent number? Is it a quantity or symbol? It is defined to be a char-
ucter which stands for, or expresses a number. Has it any other signification? How then can we say that it has a value-and how is it possi- Has no valun ble that it can have a simple and a local value? of iteelr; The things which the figures stand for, may change their value, but not the figures themselves. Indeed, it is very difficult for John to perceive how the figure 2 , standing in the sec-
but stands for value. ond place, is ten times as great as the same figure 2 standing in the first place on the right! although he will readily understand, when the arithmetical language is explained to him, that the unit of one of these places is ten times as Unit or places great as that of the other.
§ 206. Let us now examine the leading defi- Leading dee nition or principle which forms the basis of the arithmetical language. It is in these words:
" Numbers increase from right to left in a or number. tenfold ratio; that is, each removal of a figure one place towards the left, increases its value ten times."

Now, it must be remembered, that number has been defined as signifying "a unit, or a collection of units." How, then, can it have a

Does not agree with the definition befure given. right hand, or a left? and how can it increase from right to left in a tenfold ratio?" The explanation given is, that "each removal of a

Explanation. figure one place towards the left, increases its value ten times."

Number, signifying a collection of units, must Increase of necessarily increase according to the law by numbers has no connection with fgures. which these units are combined; and that law of increase, whatever it may be, has not the slightest connection with the figures which are used to express the numbers.
Ratio. Besides, is the term ratio (yet undefined), one which expresses an elementary idea? And
"Tenfold ratio:" is the term, a "tenfold ratio," one of sufficient simplicity for the basis of a system?

Does, then, this definition, which in substance is used by most authors, involve and carry to Four leading the mind of the young learner, the four leading
notions of numbers. ideas which form the basis of the arithmetical notation? viz.:

First,
second. 2d. That numbers are expressed by certain characters called figures; and of which there are ten.

Third
3d. That each figure always expresses as many units as its name imports, and no more.

Fourth
1st. That numbers are expressions for one or more things of the same kind. are 4th. That the kind of thing which a figure expresses depends on the place which the figure occupies, or on the value of the units. indicated in some other way

Place is merely one of the forms of language by which we designate the unit of a number, its oftce. expressed by a figure. The definition attributes this property of place both to number and fig. ures, while it belongs to neither.
§ 20\% Having considered the definitiuns and terms in the first division of Arithmetic, viz. in notation and numeration, we will now pass to Defnitions in the second, viz. Addition.

The following are the definitions of Addition, taken from three standard works before me:
"The putting together of two or more numbers (as in the foregoing examples), so as to make one whole number, is called Addition, and the whole number is called the sum, or amount."
"Addition is the collecting of numbers together to find their sum."
"The process of uniting two or more numbers together, so as to form one single number, is called Addition."
"The answer, or the number thus found, is called the sum, or amount."

Now, is there in either of these definitions any test, or means of determining when the pupil gets the thing he seeks for, viz. "the sum of two or more numbers?" No previous definition has been given, in either work, of the

Place: Addition:

First. Secund. Third.

Defects
,
term sum. How is the learner to know what he is seeking for, unless that thing be defined?

No principle as a standard.

Correct deffuition;

Suppose that John be required to find the sum of the numbers 3 and 5 , and pronounces it to be 10. How will you correct him, by showing that he has not conformed to the definitions and rules? You certainly cannot, because you have established no test of a correct process.

But, if you have previously defined sum to be a number which contains as many units as there are in all the numbers added: or, if you say,
"Addition is the process of uniting two or more numbers, in such a way, that all the units which they contain may be expressed by a single number, called the sum, or sum total;" you will then have a test for the correctness of the
Gives a test process of Addition; viz. Does the number, which you call the sum, contain as many units as there are in all the numbers added? The answer to this question will show that John is wrong.

Definitions of fractions.
§208. I will now quote the definitions of Fractions from the same authors, and in the same order of reference.

First.
"We have seen, that numbers expressing whole things, are called integers, or whole numbers; but that, in division, it is ofien necessary to
divide or break a whole thing into parts, and that these parts are called fractions, or broken numbers."
"Fractions are parts of an integer."
"When a number or thing is divided into Third. equal parts, these parts are called Fractions."

Now, will either of these definitions convey to the mind of a learner, a distinct and exact idea of a fraction?

The term "fraction," as used in Arithmetic, Term fraction means one or more equal parts of something regarded as a whole: the parts to be expressed in terms of the thing divided considered as a unit. There are three prominent ideas which the mind must embrace :

1st. That the thing divided be regarded as a defined. standard, or unity ;
2d. That it be divided into equal parts;
3d. That the parts be expressed in terms of

Second.
Third. the thing divided, regarded as a unit.

These ideas are referred to in the latter part of the first definition. Indeed, the definition

The deflni tions exam ined: would suggest them to any one acquainted with the subject, but not, we think, to a learner.

In the second definition, neither of them is hinted at. Take, for example, the integer num-

Is a fraction part of an integer ber 12, and no one would say that any one part of this number. as 2,4 , or 6 , is a fraction.

Third definition;

In what defective.

The third definition would be perfectly accurate, hy inserting after the word "thing," the words, "regarded as a whole." It very clearly expresses the idea of equal parts, but does not present the idea strongly enough, that the thing divided must be regarded as unity, and that the parts must be expressed in terms of this unity.
§ 209. I have thus given a few examples, illus-
Necessity of exact terms.

Objection to exactness of thought and language. trating the necessity of accurate definitions and terms. Nothing further need be added, except the remark, that terms should always be used in the same sense, precisely, in which they are defined.

To some, perhaps, these distinctions may appear over-nice, and matters of little moment. It may be supposed that a general impression, imparted by a language reasonably accurate, will suffice very well; and that it is hardly worth while to pause and weigh words on a nicely-adjusted balance.

Any such notions, permit me to say, will lead to fatal errors in education.

Definitions in math miratics.

It is in mathematical science alone that words are the signs of exact and clearly-defined ideas. It is here only that we can see, as it were, the very thoughts through the transparent words by which they are expressed. If the words of the
definitions are not such as convey to the mind of the learner, the fundamental dieas of the science, he cannot reason upon these ideas; for, he does not apprehend them; and the great reasoning faculty, by which all the subsequent principles of mathematics are developed, is entirely unexercised.*

It is not possible to cultivate the habit of, accurate thinking, without the aid and use of exact language. No mental habit is more useful than that of tracing out the connection between ideas and language. In Arithmetic, that connection can be made strikingly apparent. Clear, distinct ideas-diamond thoughts-may be strung through the mind on the thread of science, and each have its word or phrase by which it can be tronsferred to the minds of others.
how should the subjects be presented?
$\S 210$. Having considered the natural connection of the subjects of arithmetic with each

What has been considered other, as branches of a single science, based on a single unit; and having also explained the necessity of a perspicuous and accurate lan-

[^17]How ough the subjects to be presented.

Two objects in studying arithmetic:
guage, we come now to that important inquiry: How ought those subjects to be presented to the mind of a learner? Before answering this question, we should reflect, that two important objects should be sought after in the study of arithmetic :
First 1st. To train the mind to habits of clear, quick, and accurate thought-to teach it to apprehend distinctly-to discriminate closelyto judge truly—and to reason correctly ; and,

Second.
2d. To give, in abundance, that practical knowledge of the use of figures, in their various applications, which shall illustrate the stri-
Aft of arith metic.

How first im pressions are made. king fact, that the art of arithmetic is the most important art of civilized life-being, in fact, th- foundation of nearly all the others.
§ 211. It is certainly true, that most, if not al; the elementary notions, whether abstract or practical-that is, whether they relate to the science or to the art of arithmetic, must be made on the mind by means of sensible objects. Because of this fact, many have supposed that

Is reasonIng to be conducted by sensible objects? the processes of reasoning are all to be conducted by the same sensible objects; and that every abstract principle of science is to be developed and established by means of sofas, chairs, apples, and horses. There seems to be
an impression that because blocks are useful aids in teaching the alphabet, that, therefore they can be used advantageously in reading Milton and Shakspeare. This error is akin to that of attempting to teach practically, Geography and Surveying in connection with Geometry, by calling the angles of a rectangle, north, south, east, and west, instead of simply designating them by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

This false idea, that every principle of science must be learned practically, instead of being rendered practical by its applications, has been highly detrimental both to science and art.

A mechanic, for example, knowing the height of his roof and the width of his building, wishes to cut his rafters to the proper length. If he calls to his aid the established, though abstract principles of science, he finds the length of his rafter, by the well-known relation between the hypothenuse and the two sides of a right-angled triangle. If, however, he will learn nothing except practically, he must raise his rafter to the roof, measure it, and if it be too long cut it off, if too short, splice it. This is the practical way of learning things.

The truly practical way, is that in which skill is guided by science.

Do the principles above stated find any appli-

Sensible objects usefu in tucquiring the simplest elements:

Error of carrying them beyond.

False iden:

Its effects.

Example of the application of an abstract priuciple:

Of learning practically.

[^18]cation in considering the question, How should ve applied.
t'risciples of surience:

What they are:

Wise w use them. arithmetic be taught? Certainly they do. If arithmetic be both a science and an art, it should be so taught and so learned.
$\S 212$. The principles of every science are general and abstract truths. They are mere ideas, primarily acquired through the senses by experience, and generalized by processes of reflection and reasoning; and when understood, are certain guides in every case to which they are applicable. If we choose to do without them, we may. But is it wise to turn our heads from the guide-boards and explore every road that opens before us?

Now, in the study of arithmetic those principles of science, applicable to classes of cases,

When and how they should be taught. should always be taught at the earliest possible moment. The mind should never be forced through a long series of examples, without exThe methods pointed out. planation. One or two examples should always precede the statement of an abstract principle, or the laying down of a rule, so as to make the anguage of the principle or rule intelligible. But to carry the learner forward through a

Principles to be impres
selb series of them, before the principle on which they depend has been examined and stated, is forcing the mind to advance mechanically-it is lifting up the rafter to measure it, when its
exact length could be easily determined by a rule of science.

As most of the instruction in arithmetic must be given with the aid of books, we feel unable to do justice to this branch of the subject without submitting a few observations on the nature of text-books and the objects which they are intended to answer.

TEXT-BOOKS.

§213. A text-book should be an aid to the

Necessity for treating of them.

Books:

Text-book teacher in imparting instruction, and to the learner in acquiring knowledge.

It should present the subjects of knowledge in their proper order, with the branches of each subject classified, and the parts rightly arranged. No text-book, on a subject of general knowledge, can contain all that is known of the subject on which it treats; and ordinarily, it can contain but a very small part. Hence, the subjects to be presented, and the extent to which they are to be treated, are matters of nice discrimination and judgment, about which there must always be a diversity of opinion.
§214. The subjects selected should be leading subjects ones, and those best calculated to unfold, ex.

Difficulties of selertion
Selection of subjecte necessary.
What it should bo . -
plain, and illustrate the principles of the science.
low presented. They should be so presented as to lead the mind to analyze, discriminate, and classify; to see each principle separately, each in its combination with others, and all, as forming an harmonious whole. Too much care cannot be be-

Suggestive method: stowed in forming the suggestive method of arrangement: that is, to place the ideas and principles in such a connection, that each step
Reason for. shall prepare the mind of the learner for the next in order.

Object of a textbook:

Nature;

Useless detail ;
§ 215. A text-book should be constructed for the purpose of furnishing the learner with the keys of knowledge. It should point out, explain, and illustrate by examples, the methods of investigating and examining subjects, but should leave the mind of the learner free from the restraints of minute detail. To fill a book with the analysis of simple questions, which any child can solve in his own way, is to constrain and force the mind at the very point where it is capable of self-action. To do that for a pupil, which he can do for himself, is most unwise.
should not be histarical.
§ 216. A text-book on a subject of science should not be historical. At first, the minds of children are averse to whatever is abstract, be-
cause what is abstract demands thought, and Reasons thinking is mental labor from which untrained minds turn away. If the thread of science be broken by the presentation of facts, having no connection with the argument, the mind will leave the more rugged path of the reasoning, and employ itself with what requires less effort and labor.

The optician, in his delicate experiments, ex- nlustration cludes all light except the beam which he uses: so, the skilful teacher excludes all thoughts excepting those which he is most anxious to impress.

As a general rule, subject of course to some exceptions, but one method for each process One metbod. should be given. The minds of learners should not be confused. If several methods are given, Reasons it becomes difficult to distinguish the reasonings applicable to each, and it requires much knowledge of a subject to compare different methods with each other.
§ 217. It seems to be a settled opinion, both among authors and teachers, that the subject of

How the subject is divided. arithmetic car be best presented by means of three separate works. For the sake of distinction, we will designate them the First, Second, and Third Arithmetics.

We will now explain what we suppose to be the proper construction of each book, and the object for which each showld be designed.

FIRST ARITHMETIC.

First Arithmetic: its its first direction in mathematical science, and its first impulse in intellectual development.
Its importance. Hence, it is the most important book of the series. Here, the faculties of apprehension, discrimination, abstraction, classification and comparison, are brought first into activity. Now,

How the subjects must be presented. to cultivate and develop these faculties rightly, we must, at first, present every new idea by means of a sensible object, and then immediately drop the object and pass to the abstract thought.

Order of the ideas.
§ 218. This book should give to the mind

We must also present the ideas consecutively; that is, in their proper order; and by the mere method of presentation awaken the comparative and reasoning faculties. Hence, every lesson should contain a given number of ideas. The
construchon ideas of each lesson, beginning with the first, of the leseuns. should advance in regular gradation, and the lessons themselves should be regular steps in the progress and development of the arithmetical science.
§ 219. The first lesson should merely contain

First
lesson. representations of sensible objects, placed opposite names of numbers, to give the impression of the meanings of these names: thus,

And with young pupils, more striking objects should be substituted for the stars.

In the second lesson, the words should be replaced by the figures: thus,

1	-	-	-	-	-	-	$*$
2	-	-	-	-	-	-	$*$
3	-	-	-	-	-	-	$* *$
$\& c$.	$\& c$.						

In the third lesson, I would combine the ideas of the first two, by placing the words and figures opposite each other: thus,

Third lesson.

The Roman method of representing numbers should next be taught, making the fourth lesson: viz.,

First $\S 220$. We come now to the first ten comten combinations: binations of numbers, which should be given in a separate lesson. In teaching them, we must, of course, have the aid of sensible objects. We teach them thus:
One and one are how many?
How
taught by
things:

How in the abstract.

Second Len combinations.
*
One米米 \&c. \&c.

One and three are how many?
are how many?

* * *

\&c. \&c.,
through all the combinations: after which, we pass to the abstract combinations, and ask, one and one are how many? one and two, how many? one and three, \&c.; after which we express the results in figures.

We would then teach in the same manner, in a separate lesson, the second ten combinations; then the third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth. In the teaching of these comWards used. binations, only the words from one to twenty will have been used. We must then teach the
combinations of which the results are expressed by the words from twenty to one hundred.
§221. Having done this, in the way indicated, the learner sees at a glance, the basis on which the system of common numbers is constructed. He distinguishes readily, the unit one from the unit ten, apprehends clearly how the second is derived from the first, and by comparing them together, comprehends their mutual relation.

Having sufficiently impressed on the mind ot the learner, the important fact, that numbers are but expressions for one or more things of the same kind, the unit mark may be omitted in the combinations which follow.
\& 222. With the single difference of the omission of the unit mark, the very same method should be used in teaching the one hundred combinations in subtraction, the one hundred and forty-four in multiplication, and the one hundred and forty-four in division.

When the elementary combinations of the four ground rules are thus taught, the learner luoks back through a series of regular progression, in which every lesson forms an advancing step, and where all the ideas of each lesson have a

Further combinaLions.

Results.

How they appear.

Unit mark omitted

Sama method in the other rules.

Results of the method
mutual and intimate connection with each other.

Are they desirable?

The power they give. Will not such a system of teaching train the mind to the habit of regarding each idea sepa-rately-of tracing the connection between each new idea and those previously acquired-and of comparing thoughts with each other?-and are not these among the great ends to be attained, by instruction?
\& 223. It has seemed to me of great import-

Figures should be used early.

Reasons.

Consequences of using words only ance to use figures in the very first exercises of arithmetic. Unless this be done, the operations must all be conducted by means of sounds, and the pupil is thus taught to regard sounds as the proper symbols of the arithmetical language. This habit of mind, once firmly fixed, cannot be easily eradicated; and when the figures are learned afterwards, they will not be regarded as the representatives of as many things as their names respectively import, but as the representatives merely of familiar sounds which have been before learned.

This would seem to account for the fact, about which, I believe, there is no difference of

Ora. srithmetic opinion; that a course of oral arithmetic, extending over the whole subject, without the aid and use of figures, is but a poor preparation for operations on the siate. It may, it is true,
sharpen and strengthen the mind, and give it development: but does it give it that language and thuse habits of thought, which turn it into the pathways of science? The language of a science affords the tools by which the mind pries into its mysteries and digs up its hidden treasures. The language of arithmetic is formed from the ten figures. By. the aid of this language we measure the diameter of a spider's web, or the distance to the remotest planet which circles the heavens; by its aid, we calculate the size of a grain of sand and the magnitude of the sun himself: should we then abandon a language so potent, and attempt to teach arithmetic in one which is unknown in the higher departments of the science?
$\S 224$. We next come to the question, how the subject of fractions should be presented in an elementary work.

The simplest idea of a fraction comes from dividing the unit one into two equal parts. To ascertain if this idea is clearly apprehended, put the question, How many halves are there in one? The next question, and it is an important one, is this: How many halves are there in one and one-half? The next, How many halves in two? How many in two and a half? In

What it may do.

What it does not do. Language ofarithmetic Its uses.

What it performs,
lts value.

Fractions

Simplest idea.

How impressed

Next question.
three? Three and a half? and so on to twelve.
Results. You will thus evolve all the halves from the units of the numbers from one to twelve, inclusive. We stop here, because the multiplication table goes no further. These combina-
First lesson. tions should be embraced in the first lesson on fractions. That lesson, therefore, will teach the Its extent. relation between the unit 1 and the halves, and point out how the latter are obtained from the former.

Second lesson.

Grades of questions.
$\S 225$. The second lesson should be the first, reversed. 'The first question is, how many whole things are there in two halves? Second, How many whole things in four halves? How many in eight? and so on to twenty-four halves, when we reach the extent of the division

Extens of the lesson. table. In this lesson you will have taught the pupil to pass back from the fractions to the unit from which they are derived.

Fundamental frinciples:
§ 226. You have thus taught the two funda. mental principles of all the operations in fractions: viz.

First.
1st. To deduce the fractional units from in. tegral units; and,

Necond.
$2 d l y$. To deduce integral units from fractional units
$\S 22 \%$ The next lesson should explain the law by which the thirds are derived from the units from 1 to 12 inclusive ; and the following lesson the manner of changing the thirds into integral units.

The next two lessons should exhibit the same operations performed on the fourth, the next two on the fifth, and so on to include the twelfth.
§ 228. This method of treating the subject of fractions has many advantages :

1st. It points out, most distinctly, the relations between the unit 1 and the fractions which are
rourths and other fructions.

Iessons explaining thirdso

Advantages of the method

First. derived from it.

2d. It points out clearly the methods of pass-
Second.

3d. It teaches the pupil to handle and com- Third. bine the fractional units, as entire things.

4th. It reviews the pupil, thoroughly, through Fourth. the multiplication and division tables.

5th. It awakens and stimulates the faculties of apprehension, comparison, and classification.
§ 229. Besides the subjects already named, the First Arithmetic should also contain the else the First tables of denominate numbers, and collections . should contain of simple examples, to be worked on the slate,

Examples, how taught
under the direction of the teacher. It is not supposed that the mind of the pupil is sufficiently matured at this stage of his progress to understand and work by rules.

What should be taught in the First Arithmetic.
§230. In the First Arithmetic, therefore, the pupil should be taught,

1st. The language of figures;
2 d . The four hundred and eighty-eight ele-
second. mentary combinations, and the words by which they are expressed ;
Third. 3d. The main principles of Fractions;
Fourth. 4th. The tables of Denominate Numbers; and,
Finh. 5th. To perform, upon the slate, the elementary operations in the four ground rules.

SECOND ARITHMETIC.

Second Arithmetic.
$\S 231$. This arithmetic occupies a large space in the school education of the country. Many study it, who study no other. It should, thereWhat it fore, be complete in itself. It should also be should be. eminently practical; but it cannot be made so either by giving it the name, or by multiplying the examples.

Practical apulication of principle.
$\S 232$. The truly practical cannot be the antecedert, but must be the consequent of science.

Hence, that general arrangement of subjects Arranzement demanded by science, and already explained, must be rigorously followed.

But in the treatment of the subjects themselves, we are obliged, on account of the limited information of the learners, to adopt methods of teaching less general than we could desire.
$\S 233$. We must here, again, begin with the unit one, and explain the general formation of the arithmetical language, and must also adhere rigidly to the method of introducing new principles or rules by means of sensible objects. This is most easily and successfully done either by an example or question, so constructed as to show the application of the principle or rule. Such questions or examples being used merely for the purpose of illustration, one or two will answer the purpose much better than twenty: for, if a large number be employed, they are regarded as examples for practice, and are lost sight of as illustrations. Besides, it confuses the mind to drag it through a long series of examples, before explaining the principles by which tney are solved. One example, wrought One exampla under a principle or rule clearly apprehended, conveys to the mind more practical information, than a dozen wrought out as independent

Principle. exercises. Let the principle precede the pracPractice tice, in all cases, as soon as the information acquired will permit. This is the golden rule both of art and morals.

Subjects embraced.
§ 234. The Second Arithmetic should embrace all the subjects necessary to a full view of the science of numbers; and should contain an abundance of examples to illustrate their

Reading: practical applications. The reading of numbers, so much (though not too much) dwelt upon, is an invaluable aid in all practical operations.

Its value in Addition:

By its aid, in addition, the eye runs up the columns and collects, in a moment, the sum of subtration: all the numbers. In subtraction, it glances at the figures, and the result is immediately sug-

Multiplication: gested. In multiplication, also, the sight of the figures brings to mind the result, and it is reached and expressed by one word instead of
Divisicn. five. In short division, likewise, there is a corresponding saving of time by reading the results of the operations instead of spelling them. The method of reading should, therefore, be constantly practised, and none other allowed.

THIRDARITHMETIC.

$\S 235$. We have now reached the place where
Third
Arithmetic arithmetic may be taught as a science. The pupil, before entering on the subject as treated here, should be able to perform, at least mechanically, the operations of the five ground rules.
Arithmetic is now to be looked at from an entirely different point of view. The great view of it principles of generalization are now to be explained and applied.

Primarily, the general language of figures must be taught, and the striking fact must then be explained, that the construction of all integer numbers involves but a single principle, viz. the law of change in passing from one unit to General law another. The basis of all subsequent operations will thus have been laid.
§ 236. Taking advantage of this general law which controls the formation of numbers, we bring all the operations of reduction under one single principle, viz. this law of change in the unities.

Passing to addition, we are equally surprised and delighted to find the same principle controlling all its operations, and that integer numbers of all kinds, whether simple or denominate, may be added under a single rule.

Controls formation ot numbers

Its value In Addition

What is taught primarily.

Advantages of knowing a general law.

This view opens to the mind of the pupil a wide field of thought. It is the first illustration of the great advantage which arises from looking into the laws by which numbers are subtracion. constructed. In subtraction, also, the same principle finds a similar application, and a simple rule containing but a few words is found applicable to all the classes of integral numbers.

In multiplication and division, the same striking results flow from the same cause; and
General thus this simple principle, viz. the law of change law of numbers: in passing from one unit of value to another, is the key to all the operations in the four ground rules, whether performed on simple or denominate numbers. Thus, all the elementary opera-

Controls every operstion. tions of arithmetic are linked to a single principle, and that one a mere principle of arithmetical language. Who can calculate the labor, intellectual and mechanical, which may be saved by a right application of this luminous principle?

Design of the higher arithmetic:
§ 237. It should be the design of a higher arithmetic to expand the mind of the learner over the whole science of numbers; to illus trate the most important applications, and to make manifest the connection between the science and the art.

It will not answer these objects if the methods of treating the subject are the same as in the elementary works, where science has to compromise with a want of intelligence. An elementary is not made a higher arithmetic, by merely transferring its definitions, its principles, and its rules into a larger book, in the same order and connection, and arranging under them an apparently new set of examples, though in fact constructed on precisely the same principles.
$\S 238$. In the four ground rules, particularly (where, in the elementary works, simple examples must necessarily be given, because here they are used both for illustration and practice), the examples should take a wide range, and be so selected and combined as to show their common dependence on the same principle.
§ 239. It being the leading design of a series of arithmetics to explain and illustrate the science and art of numbers, great care should be taken to treat all the subjects, as far as their different natures will permit, according to the same general methods. In passing from one book to another, every subject which has been fully and satisfactorily treated in the one, should be transferred to the other with the fewest pos-

Construction of exaun ples in the four ground rules

Desigu of a series

Subjectn to be transferred when fully treated

How comnon subjects may be studied.
sible alterations; so that a pupil shall not have to learn under a new dress that which he has already fully acquired. They who have studied the elementary work should, in the higher one, either omit the common subjects or pass them over rapidly in review.

The more enlarged and comprehensive views

Reasons.

Additional reason stated. which should be given in the higher work will thus be acquired with the least possible labor, and the connection of the series clearly pointed out.

This use of those subjects, which have been fully treated in the elementary work, is greatly preferable to the method of attempting to teach every thing anew : for there must necessarily be much that is common; and that which teaches no new principle, or indi ates no new method of application, should be precisely the same in the higher work as in that which precedes it.
$\S 240$. To vary the examples, in form, without changing in the least the principles on which

A contrary metnod leads to contusion: they are worked, and to arrange a thousand such collections under the same set of rules and subject to the same laws of solution, may give a little more mechanical facility in the use of figures, but will add nothing to the stores of arithmetical knowledge. Besides, it deludes the learner with the hope of advancement, and when
he reaches the end of his higher arithmetic, he it miseads finds, to his amazement, that he has been cinducted by the same guides over the same ground through a winding and devious way, made strange by fantastic drapery: whereas, if what was new had been classed by itself, and what was known clothed in its familiar dress, the subject would have been presented in an entirely different and brighter light.

CONCLUDING REMARKS.

We have thus completed a full analysis of the language of figures, and of the construction of numbers.

We have traced from the unit one, all the numbers of arithmetic, whether integer or fractional, whether simple or denominate. We have developed the laws by which they are derived from this cominon source, and perceived the connections of each class with all the others.

We have examined that concise and beautiful language, by means of which numbers are made available in rendering the results of science practically useful; and we have also considered the best methods of teaching this great subject -the foundation of all mathematical science-

What has been done.

Laws. guage.

Methods of teaching indicated.

禺

CHAPTERIII.

Abstract

GEOMETRY DEFINED-THINGS CF WHICH IT TREATS-COMPARISON AND PROR erties of figures - demonstration - proportion - SEgGestions for teacung.

GEOMETRY.

§ 241. Geometry treats of space, and com- Geometry. pares portions of space with each other, for the purpose of pointing out their properties and mutuai relations. The science consists in the de- Its science. velopment of all the laws relating to space, and is made up of the processes and rules, by means of which portions of space can be best compared with each other. The truths of Geometry are a Is truths. series of dependent propositions, and may be di- or three vided into three classes :

1st. Truths implied in the definitions, viz. that things do exist, or may exist, corresponding to the words defined. For example: vhen we say,

1st. Those impliod in the definitions. " A quadrilateral is a rectilinear figure having four sides," we imply the existence of such a figure.

2 d . Self-evident, or intuitive truths, embodied ${ }^{2 d}$. Axions in the axioms; and,
3d. Truths inferred from the definitions and 34. Detaur-
strative truths.

When demonstrated.

Demonstration.
axioms, called Demonstrative Truths. We say that a truth or proposition is proved or demonstrated, when, by a course of reasoning, it is shown to be included under some other truth or proposition, previously known, and from which is said to follow ; hence,
A Demonstration is a series of logical arguments, brought to a conclusion, in which the major premises are definitions, axioms, or propositions already established.

Subjects of Geometry.
§ 242. Before we can understand the proofs or demonstrations of Geometry, we must understand what that is to which demonstration is applicable: hence, the first thing necessary is to form a clear conception of space, the subject of all geometrical reasoning.*

Names of forms.

The next step is to give names to particular forms or limited portions of space, and to define these names accurately. The definitions of these names are the definitions of Geometry, and the portions of space corresponding to them are

Figures. called Figures, or Geometrical Magnitudes ; of Four kinds. which there are four general classes:

First. 1st. Lines;
Second. 2d. Surfaces;
Third. 3d. Volumes;
Fourth. 4th. Angles.
§ 243. Lines embrace only one dimension of dines space, viz. length, without breadth or thickness. The extremities, or limits of a line, are called points.

Theie are two general classes of lines-straight Two clases: lines and curved lines. A straight line is one $\begin{gathered}\text { Straight and } \\ \text { Curvel. }\end{gathered}$ which lies in the same direction between any two of its points; and a curved line is one which constantly changes its direction at every point. There is but one kind of straight line, and that is one kind of fully characterized by the definition. From the definition we may infer the following axiom: "A straight line is the shortest distance between two points." There are many kinds of curves, of many or which the circumference of the circle is the simplest and the most easily described.
§ 244. Surfaces embrace two dimensions of space, viz. length and breadth, but not thickness. Surfaces, like lines, are also divided into two general classes, viz. plane surfaces and curved surfaces.

A plane surface is that with which a straight line, any how placed, and having two points common with the surface, will coincide throughout its entire extent. Such a surface is perfectly even, and is commonly designated by the

A plane surface:

Perfectly even.

Plane Figs of Geometry are but portions of a plane, and all ures. such are called plane figures.
§ 245. A portion of a plane, bounded by three

A triangle, the most simple figure. straight lines, is called a triangle, and this is the simplest of the plane figures. There are several kinds of triangles, differing from each other, however, only in the relative values of their sides and angles. For example: when the sides are all equal to each other, the triangle is called Kinds of tri- equilateral ; when two of the sides are equal, it angles. is called isosceles; and scalene, when the three sides are all unequal. If one of the angles is a right angle, the triangle is called a right-angled triangle.
§ 246. The next simplest class of plane figures comprises all those which are bounded by four

Quadrilaterals. straight lines, and are called quadrilaterals. There are several varieties of this class:
1st eppecies. 1st. The mere quadrilateral, which has no special mark, called a trapezium.

2i species.
2d. The trapezoid, which has two sides parallel and two not parallel;

3d species.
3d. The parallelogram, which has its opposite sides parallel and its angles oblique ;
thh species.
4th. The rectangle, which has all its angles right angles and its opposite sides parallel ; and,

5th. The square, which has its four sides equal
5th species. to each other, each to each, and its four angles right angles.
§ 247. Plane figures, bounded by straight lines, other Polshaving a number of sides greater than four, take names corresponding to the number of sides, viz. Pentagons, Hexagons, Heptagons, \&c.
$\S 248$. A portion of a plane bounded by a circles: curved line, all the points of which are equally distant from a certain point within called the centre, is called a circle, and the bounding line is called the circumference. This is the only the circum ference. curve usually treated of in Elementary Geometry.
§ 249. A curved surface, like a plane, em- Curred Sur faces: braces the two dimensions of length and breadth. It is not even, like the plane, throughout its whole extent, and therefore a straight line may have their propen two points in common, and yet not coincide with it. The surface of the cone, of the sphere, and cylinder, are the curved surfaces treated of in Elementary Geometry.
$\S 250$. A volume is a limited portion of space, combining the three dimeusions of length, breadth, and thickness. Volumes are divided into three classes:

Three classes.

1st classe
$2 d$ class.

3 d class.

What figures fall in each class.
.

1st. Those bounded by planes;
2 d . Those bounded by plane and curved sur. faces; and,

3d. Those bounded only by curved surfaces.
The first class embraces the pyramid and prism with their several varieties; the second class embraces the cylinder and cone; and the third class the sphere, together with others not generally treated of in Elementary Geometry.

Magnitudes named.
$\S 251$. We have now named all the geometrical magnitudes treated of in elementary GeWhat they ometry. They are merely limited portions of are. space, and do not, necessarily, involve the idea A sphere. of matter. A sphere, for example, fulfils all the conditions imposed by its defintions, without any reference to what may be within the space en-
Need not be closed by its surface. That space may be ocmuterial. cupied by lead, iron, or air, or may be a vacuum, without at all changing the nature of the sphere. as a geometrical magnitude.

It should be observed that the boundary or Boundaries limit of a geometrical magnitude, is another geoof solids. metrical magnitude, having one dimension less. For example: the boundary or limit of a volume,
Examples. which has three dimensions, is always a surface which has but two ; the limits or boundaries of
all surfaces are lines, straight or curved; and the extremities or limits of lines are points.
$\S 252$. We have now named and shown the
Subjects named.

Sclence of Geometry. ometry is a collection of those connected processes by which we determine the measures, properties, and relations of these magnitudes.

LUMPARISON OF FIGURES WITH UNITS OF MEASURE.

§253. We have seen that the term measure implies a comparison of the thing measured with some known thing of the same kind, regarded as a standard; and that such standard is called the unit of measure.* The unit of measure for Unit of meas lines must, therefore, be a line of a known length: For Linee, a foot, a yard, a rod, a mile, or any other known unit. For surfaces, it is a square constructed ForSurface on the linear unit as a side: that is, a square a square foot, a square yard, a square rod, a square mile; that is, a square described on any known unit of length.

The unit of measure, for volumes, is a volume, For Solids. and therefore has three dimensions. It is a cube A Cabe

[^19]constructed on a linear unit as an edge, or on the superficial unit as a basc. It is, therefore, a cubic foot, a cubic yard, a cubic rod, \&c. Three units Hence, there are three units of measure, each of mensure : differing in kind from the other two, viz. a known A Line, length for the measurement of lines; a known A square, square for the measurement of surfaces; and a A Cabe. known cube for the measurement of volumes. Contents: The measure or contents of any magnitude, behow ascer- longing to either class, is ascertained by finding tained. how many times that magnitude contains its unit of measure.
$\S 254$. In the fourth class of the Geometrical magnitudes, there are several varieties. First, the inclination of lines to each other; 2d, of planes; and $3 d$, the space included by three or more planes meeting at a point. In Geometry, Angles: the right angle is the simplest unit,-in Trigtheir unit. onometry, the degree, with its subdivisions.
$\S 255$. We have dwelt with much detail on the unit of measure, because it furnishes the Importance only basis of estimating quantity. The con-
of thit of measure ception of number and space merely opens to the intellectual vision an unmeasured field of investigation and thought, as the ascent to the summit of a mountain presents to the eye a
wide and unsurveyed horizon. To ascertain the height of the point of view, the diameter of the surrounding circular area and the distance to any point which may be seen; some standard or unit must be known, and its value distinctly apprehended. So, also, number and space, which at first fill the mind with vague and indefinite conceptions, are to be finally measured by units of ascertained value.
§ 256. It is found, on careful analysis, that every number may be referred to the unit one, as a standard, and when the signification of the term one is clearly apprehended, that any number, whether large or small, whether integral or fractional, may be deduced from the standard by an easy and known process.
In space, also, which is indefinite in extent, and exactly similar in all its parts, the faculties of the mind have established ideal boundaries. These boundaries give rise to the geometrical magnitudes, each of which has its own unit of measure ; and by these simple contrivances, we measure space, even to the stars, as with a yardstıck.
§ 25%. We have, thus far, not alluded to the difficulty of determining the exact length of that

Conception which we regard as a standard. We are preof the unit of sented with a given length, and told that it is called a foot or a yard, and this being usually done at a period of life when the mind is satisfied with mere facts, we adopt the conception
At first, a of a distance corresponding to a name, and then mere impression. by multiplying and dividing that distance we are enabled to apprehend other distances. But this by no means answers the inquiry, What is the standard for measurement?
Standard of
measure- The common standards of measurement, 1 yard, measurement. 1 foot, with their multiples and subdivisions, are derived from the English Exchequer and the laws of Great Britain. The one common standard from which they are all deduced is the English
A brass rod. yard. The positive standard yard, is a brass rod of the year 1601, deposited in the British Ex-
All weights chequer. All the weights and measures in the
and meas. ures come from it. United States, in general use, are derived from this standard. Besides this standard, there is yet Metre also a another, in very general use, and consequently standard. another system of Weights and Measures, known as the Metric system of France.
Primary The primary base of this system, for all debase. nominations of Weights and Measures, is the one-ten-millionth part of the distance from the equator to the pole, measured on the meridian.

It is called a Metre, and is equal to 39.37 a metre. unches, very nearly.

The imperial yard has also been referred to an invariable standard, viz. the distance between the axis of suspension and the centre of oscilla-

Invariable standsrd. tion of a pendulum which shall vibrate seconds in racuo, in London, at the level of the sea. This distance is found, and declared to be, 39.1393 imperial inches; that is, 3 imperial feet and 3.139 inches.
$\S 2 s 5$. The standard unit of length is not only

Unit of length mportant. The weight of a cubic foot of pure rain-water, is comes from divided into one thousand equal parts, and each part is called one ounce. Sixteen of these ounces make the pound avoirdupois, which is our common unit of weight. Hence, the existirg weights weighte and and measures of the United States, are derived from the English Exchequer and the laws of Great Britain.
§259. Two geometrical figures are said to be equal, when they contain the same unit of measure an equal number of times. Two figures are said to be equal in all their parts, each to each,

Equal figures :
equal in all when they can be so applied to each other as to their parts: coincide thronghout their whole extent. The term equal, is thus used in Geometry in the same sense in which it is used in Arithmetic and in Difference Analysis: viz. to denote the relation between two between equal
and quantities each of which contains the same unit an equal number of times. If two geometrical magnitudes can be applied, the one to the other, so as to coincide, they are not only equal in measure, but each part of the one is equal to
equal in all parts.

Property of fgures. - a corresponding part of the other: hence, they are said to be equal in all their parts.

properties of figures.

$\S 260$. A property of a figure is a mark common to all figures of the same class. For exam२uadriater ple: if the class be "Quadrilateral," there are two als. very obvious properties, common to all quadrilaterals, besides the one which characterizes the figure, and by which its name is defined, viz. that it has four angles, and that it may be divided into two triangles. If the class be
Parallelogram. "Parallelogram," there are several properties common to all parallelograms, and which are subjects of proof; such as, that the opposite sides and angles are equal; the diagonals divide each other into equal parts, \&c. If the class be

Trangle: "Triangle," there are many properties common to all triangles, besides the characteristic that
they have three sides. If the class be a par- Fquilaterah ticular kind of triangle, such as the equilateral, Isosceles. isosceles, or right-angled triangle, then each class kightanglea has particular properties, common to every individual of the class, but not common to the other
classes. It is important, however, to remark, that every property which belongs to "triangle," regarded as a genus, will appertain to every species or class of triangle; and universally, every property which belongs to a genus will belong to every species under it; and every property which belongs to a species will belong to every class or subspecies under it; and every property which belongs to one of a subspecies or class will be common to every individual of the class. For example: "the square

Every prop erty which belongs to a genus will be common to every spocies:
also to every subspecies, and to every individual.

Examples, on the hypothenuse of a right-angled triangle is equal to the sum of the squares described on the other two sides," is a proposition equally true of every right-angled triangle : and "every straight line perpendicular to a chord, at the Circe. middle point, will pass through the centre," is equally true of all circles.

MARES OF WHAT MAY BE PROVED.

§261. The characteristic properties of every Churacteris geometrical figure (that is, those properties with-
tic proper-
ties.
out which the figures could not exist), are given in the definitions. How are we to arrive at all the other properties of these figures? The propositions implied in the definitions, viz. that

Marks: things corresponding to the words defined do or may exist with the properties named; and the of what may self-evident propositions or axioms, contain the be proved. only marks of what can be proved; and by a

How ex-

 tended. skilful combination of these marks we are able to discover and prove all that is discovered and proved in Geometry.Definitions and axioms, and propositions de-

Major

 Premiss.in what it consicts. duced from them, are major premises in each
The science new demonstration ; and the science is made up of the processes employed for bringing unforeseen cases under these known truths; or, in syllogistic language, for proving the minors necessary to complete the syllogisms. The marks being so few, and the inductions which furnish them so obvious and familiar, there would seem to be very little difficulty in the deductive processes which follow. The connecting together of several of these marks constitutes Deductions, or Trains of Reasoning; and hence, Geometry is a Deductive Science.

DEMONSTRATION.

§262. As a first example, let us take the first proposition in Legendre's Geometry:
"If a straight line meet another straight line, Proposition the sum of the two adjacent angles will be equal ${ }^{\text {to be proved }}$ to two right angles."

Let the straight line DC meet the straight line AB at the point C, then will the angle ACD plus the angle DCB be equal to two right
 angles.

To prove this proposition, we need the defini-
Things neceessary uc prove it. tion of a right angle, viz. :

When a straight line $A B$ meets another straight line $C D$, so as to make the adjacent angles $B A C$ and $B A D$ equal to each other,
 each of those angles is called a might angle, and the line $A B$ is said to be perpendicular to $C D$.

We shall also need the $2 \mathrm{~d}, 3 \mathrm{~d}$, and 4 th axioms, Axloma. for inferring equality, ${ }^{*}$ viz. :
2. Things which are equal to the same thing socond are equal to each other.

[^20]Third.

Fourth.
4. If equals be added to equals, the sums will be equal.

Now before these formulas or tests can be ap-

Line to be drawn.

Proof:
Prool: plied, it is necessary to suppose a straight line $C E$ to be drawn perpendicular to $A B$ at the point C : then by the definition of a right angle,
 the angle ACE will be equal to the angle ECB.

By axiom 3rd, we have,
Continued:
ACD equal to ACE plus ECD: to each of these equals add DCB ; and by the 4th axiom re shall have, ACD plus DCB equal to ACE plus ECD plus DCB; but by axiom 3rd,

ECD plus DCB equals ECB: therefore by axiom 2 d ,

ACD plus DCB equals ACE plus ECB.
But by the definition of a right angle,
Comelusion.
ACE plus ECB equals two right angles : therefore, by the 2 d axiom,

ACD plus DCB equals two right angles.
It bases It will be seen that the conclusiveness of the proof results,

First.

1st. From the definition, that ACE and ECB
3. A whole is equal to the sum of all its parts. are equal to each other, and each is called a
right-angle : consequently, their sum is equal to two right angles; and,

2dly. In showing, by means of the axioms, that Secont. ACD plus DCB equals ACE plus ECB; and then inferring from axiom 2 d , that, ACD plus DCB equals two right angles.
$\S 263$. The difficulty in the geometrical reasoning consists mainly in showing that the proposition to be proved contains the marks whic! prove it. To accomplish this, it is frequently necessary to draw many auxiliary lines, forming new figures and angles, which can be shown to possess marks of these marks, and which thus become connecting links between the known and the unknown truths. Indeed, most of the skill and ingenuity exhibited in the geometrical processes are employed in the use of these auxiliary means. The example above affords an illustration. We were unable to show that the sum of the two angles possessed the mark of being equal to two right angles, until we had drawn a perpendicular, or supposed one drawn, at the point where the given lines intersect. That being done, the two right angles ACE and ECB Concluslon were formed, which enabled us to compare the sum of the angle ACD and DCB with two right angles, and thus we proved the proposition.

Difficulties in the demonstrations.

Auxlliaries necessary.

Connecting Links.

How used.

Proposition. §264. As a second example, let us take the following proposition:
Enunciation. If two straight lines intersect each other, the opposite or vertical angles will be equal.

Let the straight line AB intersect the straight line
Diagram. ED at the point C : then will the angle ACD be equal to the opposite angle ECB ; and the angle ACE equal to the angle DCB.

To prove this proposition, we need the last proposition, and also the 2 d and 5 th axioms, viz. :
" If a straight line meet another straight line, the sum of the two adjacent angles will be equal to two right angles."
"Things which are equal to the same thing are equal to each other."
"If equals be taken from equals, the remainders will be equal."

Now, since the straight line AC meets the straight line ED at the point C , we have,

Proof.
ACD plus ACE equal to two right angles.
And since the straight line DC meets the straight line AB, we have,

ACD plus DCB equal to two right angles: hence, by the second axiom,

ACD plus ACE equals ACD plus DCB : ta-
king from each the common angle ACD , we conclusion. know from the fifth axiom that the remainders will be equal; that is, the angle ACE equal to the opposite or vertical angle DCB.
$\S 265$. The two demonstrations given above combine all the processes of proof employed in
every demonstration of the same class. When

Demonstrations general. any new truth is to be proved, the known tests of truth are gradually extended to auxiliary quantities having a more intimate connection with such new truth than existed between it and the known tests, until finally, the known tests, through a series of links, become applicable to the final truth to be established: the intermediate processes, as it were, bridging over the space between the known tests and the final truth to be proved.
§266. There are two classes of demonstrations, quite different from each other, in some lespects, although the same processes of argumentation are employed in both, and although the conclusions in both are subjected to the same logical tests. They are called Direct, or Positive Demonstration, and Negative Demonstration, or the Reductio ad Absurdum.

Direct dem onstration.

Negative, or

Difference.
§ 26\%. The main differences in the two methods are these: The method of direct demonDirect Dem- stration rests its arguments on known and adonstration mitted truths, and shows by logical processes that the proposition can be brought under some previous definition, axiom, or proposition : while
Negative Demonstration. the negative demonstration rests its arguments on an hypothesis, combines this with known propositions, and deduces a conclusion by processes Conelusion: strictly logical. Now if the conclusion so deduced agrees with any known truth, we infer With w'ust comparea. that the hypothesis, (which was the only link in the chain not previously known), was true; but if the conclusion be excluded from the truths previously established; that is, if it be opposed to any one of them, then it follows thai the hypothesis, being contradictory to such truth, must

Determines whether the bypothesis is true or false. be false. In the negative demonstration, therefore, the conclusion is compared with the truths known antecedently to the proposition in question: if it agrees with any one of them, the hypothesis is correct ; if it disagrees with any one of them, the hypothesis is false.

Proof by Nugative Demonstrition.
§ 268. We will give for an illustration of this method, Proposition XVII. of the First Book of Legendre: "When two right-angled triangles have the hypothenuse and a side of the one equal
to the hyp thenuse and a side of the other, each Euunciation to each, the remaining parts will be equal, each to each, and the triangles themselves will be equal."

In the two right-angled triangles BAC and EDF (see next figure), let the hypothenuse AC Enunciation be equal to DF , the side BA to the side ED: ${ }^{\text {by the figure. }}$ then will the side BC be equal to EF , the angle A to the angle D , and the angle C to the angle F . To prove this proposition, we need the following, which have been before proved ; viz.:
Prop. X. (of Legendre). "When two triangles have the three sides of the one equal to the three $\begin{gathered}\text { truths neces } \\ \text { sary. }\end{gathered}$ sides of the other, each to each, the three angles will also be equal, each to each, and the triangles themselves will be equal."
Prop. V. "When two triangles have two Iroposition sides and the is cluded angle of the one, equal to two sides and the included angle of the other, each to each, the two triangles will be equal."

Axiom I. "Things which are equal to the Axioms. same thing, are equal to each other."

Axiom X. (of Legendre). "All right angles are equal to each other."

Prop. XV. "If from a point without a straight Proposition line, a perpendicular be let fall on the line, and oblique lines be drawn to different points,

1st. "The perpendicular will ke shorter than any oblique line ;

2d. "Of two oblique lines, drawn at pleasure, that which is farther from the perpendicular will be the longer."

Now the two sides BC and Begiuning of EF are either equal or unthe dernonstration. equal. If they are equal, then by Prop. X. the remaining parts of the two trian-
 gles are also equal, and the triangles themselves are equal. If the two sides are unequal, one of them must be greater than the other: suppose BC to be the greater.
construction On the greater side BC take a part BG , equal of the figure. to EF, and draw AG. Then, in the two triangles BAG and DEF the angle B is equal to the angle E , by axiom X (Legendre), both being right angles. The side AB is equal to the side DE , and by hypothesis the side BG is equal to the side EF : then it follows from Prop. V. that the side AG is equal to the side DF . But the side

Uemonstrition. DF is equal to the side AC : hence, by axiom I , the side $A G$ is equal to $A C$. But the line $A G$ cannot be equal to the line AC , having been shown to be less than it by Prop. XV.: hence,
canclusion. the conclusion contradicts a known truth, and is therefore false ; consequently, the supposition (on which the conclusion rests), that BC and EF are unequal, is also false ; therefore, they are equal
§ 269. It is often supposed, though erroneously, that the Negative Demonstration, or the demonstration involving the "reductio ad absurdum," is less conclusive and satisfactory than direct or positive demonstration. This impression is simply the result of a want of proper analysis. For example : in the demonstration just given, it was proved that the two sides BC and EF cannot be unequal; for, such a supposition, in a logical argumentation, resulted in a conclusion directly opposed to a known truth; and as equality and inequality are the only general conditions of relation between two quantities, it follows that if they do not fulfil the one, they must the other. In both kinds of demonstration, the premises and conclusion agree ; that is, they are both true, or both false; and the reasoning or argument in both is supposed to be strictly logical.

In the direct demonstration, the premises are known, being antecedent truths; and hence, the conclusion is true. In the negative demon- Differences in stration, one element is assumed, and the conclusion is then compared with truths previously established. If the conclusion is found to agree with any one of these, we infer that the hypothesis or assumed element is true; if it con-
hypothesis is true. tradicts any one of these truths, we infer that

When false. the assumed element is false, and hence that its opposite is true.
sleasured: Its signification.

General Remarks.
§ 270 . Having explained the meaning of the term measured, as applied to a geometrical magnitude, viz. that it implies the comparison of a magnitude with its unit of measure ; and having also explained the signification of the word Property, and the processes of reasoning by which, in all figures, properties not before noticed are inferred from those that are known; we shall now add a few remarks on the relations of the geometrical figures, and the methods of comparing them with each other.

PROPORTION OF FIGURES.

Proportion .
§ 2\%1. Proportion is the relation which one geometrical magnitude bears to another of the same kind, with respect to its being greater or less. The two magnitudes so compared are called

Its measurc. terms, and the measure of the proportion is the quotient which arises from dividing the second term by the first, and is called their Ratio. Only quantities of the same kind can be compared together, and it follows from the nature of the relation that the quotient or ratio of any two terms will be an abstract number, whether the terms themselves be abstract or concrete
$\S 272$. The term Proportion is defined by most Proportion: authors, "An equality of ratios between four how defiued numbers or quantities, compared together two and two." A proportion certainly arises from such a comparison: thus, if

$$
\frac{\mathrm{B}}{\mathrm{~A}}=\frac{\mathrm{D}}{\mathrm{C}} ; \text { then, }
$$

$$
\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}
$$

is a proportion.
But if we have two quantities A and B, which may change their values, and are, at the same time, so connected together that one of them shall increase or decrease just as many times as the other, their ratio will not be altered by such changes; and the two quantities are then said to be in proportion, or proportional.

True deflittion.

Two proportional quauti ties.

Thus, if \mathbf{A} be increased three times and B three times, then,

$$
\frac{3 B}{3 A}=\frac{A}{B} ;
$$

that is, 3 A and 3 B bear to each other the same proportion as \mathbf{A} and B. Science needed a general term to express this relation between two quantities which change their values, without altering their quotient, and the term "proportional," or "in proportion," is employed for that How used. purpose.

Reasuns for modiflcation. .
 definition of proportion, which has been so long accepted, it may be proper to state that the term has been used by the best authors in the exact

Use of the term. sense here attributed to it. In the definition of the second law of motion, we have, "Motion, or change of motion, is proportional to the force impressed ;"* and again, "The inertia of a body is proportioned to its weight." \dagger Similar examples may be multiplied to any extent. Indeed, symbol used there is a symbol or character to express the to represent proportion. relation between two quantities, when they undergo changes of value, without altering their ratio. That character is α, and is read "proportional to." Thus, if we have two quantities denoted by A and B , written,

Example. $A \propto B$,
the expression is read, "A proportional to B."

Another kind of proportion.
§ 273 . There is yet another kind of relation which may exist between two quantities A and B, which it is very important to consider and understand. Suppose the quantities to be so connected with each other, that when the first is increased according to any law of change, the second shall decrease according to the same law ; and the reverse.

[^21]For example : the area of a rectangle is equal to the product of its base and altitude. Then, in the rectangle $A B C D$, we have

$$
\text { Area }=\mathrm{AB} \times \mathrm{BC} .
$$

Take a second rectangle EFGH, having a longer base EF, and a less altitude FG, but such

Second Exampla that it shall have an equal H G area with the first: then we shall have

$$
\text { Area }=\mathrm{EF} \times \mathrm{FG}
$$

Now since the areas are equal, we shall have

$$
\mathrm{AB} \times \mathrm{BC}=\mathrm{EF} \times \mathrm{FG} ;
$$

Equation
and by resolving the terms of this equation into a proportion, we shall have

$$
\mathrm{AB}: \mathrm{EF}:: \mathrm{FG}: \mathrm{BC} .
$$

Proportion
It is plain that the sides of the rectangle $A B C D$ may be so changed in value as to become the sides of the rectangle EFGH, and that while they are undergoing this change, AB will increase and BC diminish. The change in the Relatons of values of these quantities will therefore take place according to a fixed law : that is, one will be diminished as many times as the other is increased,
since their product is constantly equal to the area of the rectangle EFGH.
Expressed by Denote the side AB by x and BC by y, and letters. the area of the rectangle EFGH, which is known, by a; then

$$
x y=a
$$

and when the product of two varying quantities is constantly equal to a known quantity, the two Reciprocal quantities are said to be Reciprocally or Inverse1 by each member of the above equation, we shall have

$$
\frac{1}{x y}=\frac{1}{a}
$$

Reductions and by multiplying both members by x, we shall of the
Equations. have

$$
\frac{1}{y}=\frac{x}{a}
$$

and then by dividıng both numbers by x, we have

Final form.

$$
\frac{\frac{1}{y}}{x}=\frac{1}{a}
$$

that is, the ratio of x to $\frac{1}{y}$ is constantly equal to $\frac{1}{a}$; that is, equal to the same quantity, however x or
y may vary, for, a anu consequently $\frac{l}{a}$ does not change. Hence,

Two quantities, which may change their values, are reciprocally or inversely proportional, when
lnverse Proporticu defined. one is proportional to unity divided by the other, and then their product remains constant.

We express this reciprocal or inverse relation thus:

$$
A \propto \frac{1}{B}
$$

A is said to be inversely proportional to B : the symbols also express that A is directly proportional to $\frac{1}{\mathrm{~B}}$. If we have

$$
A \propto \frac{B}{C^{\prime}}
$$

we say, that A is directly proportional to B, and inversely proportional to C .

The terms Direct, Inverse or Reciprocal, apply to the nature of the proportion, and not to the Ratio, which is always a mere quotient and the measure of proportion. The term Direct applies to all proportions in which the terms inhow read.

Direct and Inverse, terms not crease or decrease together; and the term In- applicable ω verse or Reciprocal to those in which one term increases as the other decreases. They cannot, therefore, properly be applied to ratio without changing entirely its signification and definition.

Geometrical magnitudes compared.
§ 274. In comparing geometrical magnitudes, by means of their quotient, it is not the quotient alone which we consider. The comparison implies a general relation of the magnitudes, which is measured by the Ratio. For example: we
Example. say that "Similar triangles are to each other as the squares of their homologous sides." What do we mean by that? Just this:

Formula of Comparison.

That the area of a triangle
Is to the area of a similar triangle
As the area of a square described on a side of the first,

To the area of a square described on an homologous side of the second.
Thus, we see that every term of such a proCbanges of , portion is in fact a surface, and that the area value: how affected of a triangle increases or decreases much faster than its sides; that is, if we double each side of a triangle, the area will be four times as great: if we multiply each side by three, the area will
Results be nine times as great; or if we divide each side by two, we diminish the area four times, and so on. Again,

Circles compared

The area of one circle
Is to the area of another circle,
As a square described on the diameter of the first

To a squar described on the diametcr of the second.

Hence, if we double the diameter of a circle,
How their areas changa the area of the circle whose diameter is so increased will be four times as great : if we multiply the diameter by three, the area will be nine times as great; and similarly if we divide the diameter.
§ 275. In comparing volumes together, the comparison of volumes, same general principles obtain. Similar volumes are to each other as the cubes described on their homologous or corresponding sides. That is,

A prism
Is to a similar prism,
As a cube described on a ride of the first,
Is to a cube described on an homologous side of the second.
Hence, if the sides of a prism be doubled, the contents of volume will be increased eight-fold. Again,

A sphere
Is to a sphere,
As a cube described on the diameter of the first, Is to a cube described on a diameter of the second.
Hence, if the diameter of a sphere be doubled, its contents of volume will be increased eight-

How the volumes change.

Sphere:

How its volume changea fold; if the dianeter be multiplied by three, the
contents of volume will be increased twenty-seven fold: if the diameter be multiplied by four, the contents of volume will be increased sixty-four fold; the contents of volume increasing as the cubes of the numbers $1,2,3,4, \& \mathrm{cc}$.

Ratio:
§ 276. The relation or ratio of two magnitudes an abstract to each other, may be, and indeed is, expressed number. by an abstract number. This number has a When having a fixed value. fixed value so long as we do not introduce a change in the contents of the figures; but if we wish to express their ratio under the supposition that their contents may change according to fixed laws (that is, so that the volumes How varying shall continue similar), we then compare them volumes are
compared. with similar figures described on their homologous or corresponding sides; or, what is the same thing, take into account the corresponding changes which take place in the abstract numbers that express their contents.

RECAPITULATION.

General outhine. § 27%. We have now completed a general outline of the science of Geometry, and what has been said may be recapitulated under the following heads. It has been shown,
Georectry: 1st. That Geometry is conversant about space,
or those linited portions of space which are to what it $\begin{gathered}\text { relates. }\end{gathered}$ called Geometrical Magnitudes.

2d. That the geometrical magnitudes embrace four species:

1st. Lines-straight and curved; Lines.
2d. Surfaces-plane and curved; Surfaces.
3d. Volumes-bounded either by plane sur- Volumes.
faces or curved, or both; and,
4th. Angles, arising from the positions of Angles.
lines with each other; or of planes with each
other-the lines and planes being boundaries.

3d. That the science of Geometry is made up of those processes by means of which all the properties of these magnitudes are examined and developed, and that the results arrived at constitute the truths of Gcometry.

4 th. That the truths of Geometry may be di-
Science: how made up.

Truths vided into three classes:

1st. Those implied in the definitions, viz. First class. that things exist corresponding to certain words defined ;

2d. Intuitive or self-evident truths embodied in the axioms;

3d. Truths deduced (that is, inferred) from the definitions and axioms, called Demonstrative Truths.
5th. That the examination of the properties of the geometrical magnitudes has reference,

Secood.

Third.

Geometrical magnitules.

Comparison.

Properties.

Proportion.

1st. To their comparison with a standard or unit of measure ;
2 d . To the discovery of properties belonging to an individual figure, and yet common to the entire class to which such figure belongs; 3 d . To the comparison, with respect to magnitude, of figures of the same species with each other; viz. lines with lines, surfaces with surfaces, volumes with volumes, and angles with angles.

SUGGESTIONS FOR THOSE WHO TEACH GEOMETRY.
Suggestions. 1. Be sure that your pupils have a clear apFirst. prehension of space, and of the notion that Geometry is conversant about space only.
2. Be sure that they understand the significa-

Second. tion of the terms, lines, surfaces, and volumes, and that these names iudicate certain portions of space corresponding to them.
3. See that they understand the distinction

Third. between a straight line and a curve; between a plane surface and a curved surface; between a volume bounded by planes and a volume bounded by curved surfaces.
4. Be careful to have them note the charac-

Fourth. teristics of the differcnt species of plane figurcs, such as triangles, quadrilaterals, pentagons, hexigons, \&c.; and then the characteristic of each
class or subspecies, so that the name shall recall, at once, the characteristic properties of each figure.
5. Be careful, also, to have them note the characteristic differences of the volnmes. Let Finh. them often name and distinguish those which are bounded by planes, those bounded by plaue and curved surfaces, and those bounded by curved surfaces only. Regarding Volume as a genus, let them give the species and subspecies into which it may be divided.
6. Having thus made them familiar with the things which are the subjects of the reasoning, explain carefully the nature of the definitions; then of the axioms, the grounds of our belief in them, and the information from which those self-evident truths are inferred.
7. Then explain to them, that the definitions and axioms are the basis of all geometrical seasoning: that every proposition must be deduced from them, and that they afford the tests of all the truths which the reasonings establish.
8. Let every figure, used in a demonstration, be accurately drawn, by the pupil himself, on a blackboard. This will establish a connection between the eye and the hand, and give, at the same time, a clear perception of the figure and a distinct apprehension of the relations of its parts.

Elghth.
Sixth.

Seventh.
9. Let the pupil, in every demonstration, first Ninth. enunciate, in general terms, that is, without the aid of a diagram, or any reference to one, the proposition to be proved; and then state the principles previously established, which are to be employed in making out the proof.
10. When in the course of a demonstration,

Tenth. any truth is inferred from its connection with one before known, let the truth so referred to be fully and accurately stated, even though the number of the proposition in which it is proved, be also required. This is deemed important.
11. Let the pupil be made to understand that

Elewnith. a demonstration is but a series of logical arguments arising from comparison, and that the result of every comparison, in respect to quantity, contains the mark either of equality or inequality.
12. Let the distinction between a positive

Twelath. and negative demonstration be fully explained and clearly apprehended.
13. In the comparison of quantities with each

Thirteenth. other, great care should be taken to impress the fact that proportion exists only between quan. tities of the same kind, and that ratio is the measure of proportion.
14. Do not fail to give much importance to Fourrenth. the kind of quantity under consideration. Let
the question be often put, What kind of quantity Fourteenth are sou considering? Is it a line, a surface, or a volume? And what kind of a line, surface, or volume?
15. In all cases of measurement, the unit of measure should receive special attention. If lines are measured, or compared by means of a Fineenth. common unit, see that the pupil perceives that unit clearly, and apprehends distinctly its relations to the lines which it measures. In surfaces, take much pains to mark out on the blackboard the particular square which forms the unit of measure, and write unit, or unit of measure, over it. So in the measurement of volumes, let the unit or measuring cube be exhibited, and the conception of its size clearly formed in the mind; and then impress the important fact, that, all measurement consists in merely comparing a unit of measure with the quantity measured; and that the number which expresses the ratio is the numerical expression for that measure.
16. Be careful to explain the difference of the sisteenth terms Equal and Equal in all their parts, and never permit the pupil to use the terms as synonymous. An accurate use of words leads to nice discriminations of thought.

CHAPTERIV.

```
ANALIBIS-ALGEBRA-ANALYTICALGEOMETRTO
```


ANALYSIS.

§278. Analysis is a general term, embracing that entire portion of mathematical science in which the quantities considered are represented by letters of the alphabet, and the operations to be performed on them are indicated by signs.
$\S 279$. We have seen that all numbers must be numbers of something;* for, there is no such

Analysis defined. thing as a number without a basis: that is, every number must be based on the abstract unit one, or on some unit denominated. But although numbers must be numbers of something, yet they but may be may be numbers of any thing, for the unit may of many kind be whatever we choose to make it.

* Section 112.

All quantity consists of parts.
\S 280. All quantity, made up of definite parts, can be numbered exactly or approximatively, and, in this respect, possesses all the properties of number. Propositions, therefore, concerning numbers, have the remarkable peculiarity, that Propositions they are propositions concerning all quantities in regard to number apply also to quantity. whatever. That half of six is three, is equaliy true, whatever the word six may represent, whether six abstract units, six men, or six triangles. Analysis extends the generalization still further. A number represents, or stands for, that particular number of things of the same kind,

Algebraic

 symbols more general.Any thing conceived may be divided. without reference to the nature of the thing; but an analytical symbol does more, for it may stand for all numbers, or for all quantities which numbers represent, or even for quantities which cannot be exactly expressed numerically.

As soon as we conceive of a thing we may conceive it divided into equal parts, and may represent either or all of those parts by a or x, or may, if we please, denote the thing itself by a or x, without any reference to its being divided into parts.

Each figure stunds for a class.
§281. In Geometry, each geometrical hgure stands for a class; and when we have demon. strated a property of a figure, that property i considered as proved for every figure of the class.

For example: when we prove that the square Example. described on the hypothenuse of a right-angled triangle is equal to the sum of the squares described on the other two sides, we demonstrate the
fact for all right-angled triangles. But in analysis, all numbers, all lines, all surfaces, all volumes, may be denoted by a single symbol, a or x.

In analyeis the symbols stand for things of all classes.
Hence, all truths inferred by means of these symbols are true of all things whatever, and not like those of number and geometry, true only of particular classes of things. It is, therefore, not surprising, that the symbols of analysis do not excite in our minds the ideas of particular things. The mere written characters, a, b, c, d, x, y, z, serve as the representatives of things in general, whether abstract or concrete, whether known or unknown, whether finite or infinite.
$\S 282$. In the uses which we make of these symbols, and the processes of reasoning carried on by means of them, the mind insensibly comes to regard them as things, and not as mere signs; and we constantly predicate of them the properties of things in general, without pausing to inquire what kind of thing is implied. Thus, we define an equation to be a proposition in which equality is predicated of one thing as compared with another. For example :

Symbols come to be regarded as things.

Example.

The equar tion,

Hence, the truths infergea eral.

$$
a+c=x
$$

Whataxioms is an equation, because x is declared to be necessary to its solution. equal to the sum of a and c. In the solution of equations, we employ the axioms, "If equals be added to equals, the sums will be equal ;" and, "If equals be taken from equals, the remainders They express will be equal." Now, these axioms do not exqualities of things.

Hence, inferences reLate to things. press qualities of language, but properties of quantity. Hence, all inferences in mathematical science, deduced through the instrumentality of symbols, whether Arithmetical, Geometrical, or Analytical, must be regarded as concerning quantity, and not symbols.

Quantity need not always be present to the mind.

The reasoning is all based on the supposition of quantity.

As analytical symbols are the representatives of quantity in general, there is no necessity of keeping the idea of quantity continually alive in the mind; and the processes of thought may, without danger, be allowed to rest on the symbols themselves, and therefore, become to that extent, merely mechanical. But, when we look back and see on what the reasoning is based, and how the processes have been conducted, we shall find that every step was taken on the supposition, that we were actually dealing with things, and not symbols; and that, without this understanding of the language, the whole system is without signification, and fails.
$\S 283$. There are ihree principal brarches of
Three
branches Analysis :
1st. Algebra.
2d. Analytical Geometry.
3d. Differential and Integral Calculus.

Algebrim
Analytical
Geometry, Calculus.
ALGEBRA.
§284. Algebra is, in fact, a species of universal Arithmetic, in which letters and signs are employed to abridge and generalize all processes involving numbers. It is divided into two parts, Algebra:

Universal Arithmetic,

Two parts corresponding to the science and art of Arithmetic :

1st. That which has for its object the investigation of the properties of numbers, embracing all the processes of reasoning by which new properties are inferred from known ones ; and,

2d. The solution of all problems or questions second part involving the determination of certain numbers which are unknown, from their connection with certain others which are known or given.

ANALYTICALGEOMETRY.

$\S 285$. Analytical Geometry examines the Annytical properties, measures, and relations of the geometrical magnitudes by means of the analytical itsnature.

Descartus, the original founder of this science.

What he observed.

All position expressed by symbols.
symbols. This branch of mathematical science originated with the illustrious Descartes, a ceiebrated French mathematician of the 17 th century. He observed that the positions of points, the direction of lines, and the forms of surfaces, could be expressed by means of the algebraic symbols; and consequently, that every change, either in the position or extent of a geometrical magnitude, produced a corresponding change in certain symbols, by which such magnitude could be represented. As soon as it was found that, to every variety of position in points, direction in lines, or form of curves or surfaces, there corresponded certain analytical expressions (called their Equations), it followed, that if the processes were known by which these equations could be The equation examined, the relation of their parts determined, develops the properties of the magnitude.

Power over the magnitude extendcd by the equation. and the laws according to which those parts vary, relative to one another, ascertained, then the corresponding changes in the geometrical magnitudes, thus represented, could be immediately inferred.

Hence, it follows that every geometrical question can be solved, if we can resolve the cor:esponding algebraic equation ; and the power over the geometrical magnitudes was extended just in proportion as the properties of quantity were brought to light by means of the Calculus. The
applications of this Calculus were soon made to To what subr the subjects of mechanics, astronomy, and indeed, in a greater or less degree, to all branches of natural philosophy; so that, at the present 1 is present time, all the varieties of physical phenomena, with which the higher branches of the science are conversant, are found to answer to varieties determinable by the algebraic analysis.
$\S 286$. Two classes of quantities, and conse-
Quanitites which enter quently two sets of symbols, quite distinct from into the cat each other, enter into this Calculus; the one called Constants, which preserve a fixed or given value throughout the same discussion or investigation ; and the other called Variables, which undergo certain changes of value, the laws of which are indicated by the algebraic expressions or equations into which they enter. Hence,

Analytical Geometry may be defined as that branch of mathematical science, which examculus.

Constants.

Variablea

Analytical

 Geometry defined. ines, discusses, and develops the properties of geometrical magnitudes by noting the changes that take place in the algebraic symbols which represent them, the laws of change being determined by an algebraic equation or formula.
DIFF. RENTIAL AND INTEGRAL CALCULUS.

Quantities considered.

Variables, Constants.
§ 88% In this branch of mathematical science, as in Analytical Geometry, two kinds of quantity are considered, viz. Variables and Constants; and consequently, two distinct sets of symbols The Science. are employed. The science consists of a series of processes which note the changes that take place in the value of the Variables. Those changes of value take place according to fixed laws established by algebraic formulas, and are

Marks.

Differentials.

Analytical Geometry, and Calculus:

How they regard quantity : indicated by certain marks drawn from the variable symbols, called Differentials. By these marks we are enabled to trace out with the accuracy of exact science the most hidden properties of quantity, as well as the most general and minute laws which regulate its changes of value.
§288. It will be observed, that Analytical Geometry and the Differential and Integral Calculus treat of quantity regarded under the same general aspect, viz. as subject to changes or variations in magnitude according to laws indicated by algebraical formulas; and the quantities, whether variable or constant, are, in both cases,
by what represented. represented by the same algebraic symbols, viz. the constants by the first, and the variables by
the final letters of the alphabet. There is, how- Difference; ever, this important difference: in Analytical Geometry all the results are inferred from the relations which exist between the quantities themselves, while in the Differential and Integral Calculus they are deduced by considering what may be indicated by marks drawn from variable quantities, under certain suppositions, and by marks of such marks.
§ 289. Algebra, Analytical Geometry, the Differential and Integral Calculus, extended into the Theory of Variations, make up the subject of analytical science, of which Algebra is the elementary branch. We shall, in this chapter, limit our remarks to the subject of Algebra;

Analytical Science.
reserving a separate chapter for the Differential Differential Calculus. and Integral Calculus. This subject embráces a very remarkable class of quantities.

ALGEBRA.

$\S 290$. On an analysis of the subject of Alge- Algebra. bra, we think it will appear that the subject itself presents no serious difficulties, and that most of Difficulties the embarrassment which is experienced by the pupil in gaining a knowledge of its principles, as well as in their applications, arises from not at.

How over come.

Language. tending sufficiently to the language or signs of the thoughts which are combined in the reasonings. At the hazard, therefore, of being a little diffuse, I shall begin with the very elements of the algebraic language, and explain, with much minuteness, the exact signification of the char-

Characters which represent quantity.

Signs. acters that stand for the quantities which are the subjects of the analysis; and also of those signs which indicate the several operations to be performed on the quantities.

Quantities. § 291. The quantities which are the subjects Howdivided. of the algebraic analysis may be divided into two classes: those which are known or given, and those which are unknown or sought. The

How repre sented. known are uniformly represented by the first letters of the alphabet, $a, b, c, d, \& c . ;$ and the unknown by the final letters, $x, y, z, v, w, \& c$.

May be increased or diminished.
Five opera-tions-

First.
§ 292. Quantity is susceptible of being increased or diminished; and there are six operations which can be performed upon a quantity that will give results differing from the quantity itself, viz.:
lst. To add it to itself or to some other quantity ;
Second.
2d. To subtract some other quantity from it;

Abstract

3d. To multiply it by a number ; 4th. To divide it; 5th. To raise it to any power ; and 6th. To extract a root of it. The cases in which the multiplier or divisor is 1, are of course excepted; as also the case Exception. where a root is to be extracted of 1.

§ 293. The six signs which denote these oper-
Signs. ations are too well known to be repeated here. These, with the signs of equality and inequality, the letters of the alphabet and the figures which are employed, make up the elements of the algebraic language. The words and phrases of the algebraic, like those of every other language, are to be taken in connection with each other, and are not to be interpreted as separate and isolated symbols.
$\S 294$. The symbols of quantity are designed to represent quantity in general, whether abstract or concrete, whether known or unknown; and the signs which indicate the operations to be performed on the quantities are to be interpreted in a sense equally general. When the sign plus is written, it indicates that the quantity before which it is placed is to be added to some other quantity; and the sign minus implies the exist-

Symbols of quantity.

General.

Examples.
Signs plus and milus.
ence of a minuend, from which the subtraherid is to be taken. One thing should be observed in

Signs have no effect on the nature of a quantity. regard to the signs which indicate the operations that are to be performed on quantities, viz. they do not at all affect or change the nature of the quantity before or after which they are written but merely indicate what is to be done with the Examples: quantity. In Algebra, for example, the minus In Algebra sign merely indicates that the quantity before which it is written is to be subtracted from - Analytical some other quantity; and in Analytical GeomGeometry. etry, that the line before which it falls is estimated in a contrary direction from that in which it would have been reckoned, had it had the sign plus; but in neither case is the nature of the quantity itself different from what it would have been had it had the sign plus.

Interpretation of the language:

The interpretation of the language of Algebra is the first thing to which the attention of a pupil should be directed; and he should be drilled on the meaning and import of the symbols, until their significations and uses are as familiar as .ts necessity. the sounds and combinations of the letters of the alphabet.

Elements explained.
§295. Beginning with the elements of the language, let any number or quantity be designated by the letter a, and let it be required to
add this letter to itself, and find the res.lt or sum. The addition will be expressed by

$$
a+a=\text { the sum. }
$$

But how is the sum to be expressed? By simply signifeation regarding a as one a, or $1 a$, and then observing that one a and one a make two a 's or $2 a$: hence,

$$
a+a=2 a
$$

and thus we place a figure before a letter to indicate how many times it is taken. Such figure
is called a Coefficient.

Coefficient.
§ 296. The product of several numbers is in- Produa: dicated by the sign of multiplication, or by simply writing the letters which represent the numbers by the side of each other. Thus,

$$
a \times b \times c \times d \times f, \text { or } a b c d f
$$

indicates the continued product of a, b, c, d, and f, and each letter is called a factor of the product: hence, a factor of a product is one of the I'actor. multipliers which produce it. Any figure, as 5, written before a product, as

$5 a b c d f$,

is the coefficient of the product, and shows that coefficient α the product is taken 5 times.

Equal factors:
what the product becomes.
$\S 29 \%$. If in the product $a b c d f$, the numbers represented by a, b, c, d, and f were equal to each other, they would each be represented by a single letter a, and the product would then become

$$
a \times a \times a \times a \times a=a^{b} ;
$$

How expressed.
that is, we indicate the product of several equal factors by simply writing the letter once and placing a figure above and a little at the right of it, to indicate how many times it is taken as
Exponent: a factor. The figure so written is called an exwhere writ- ponent. Hence, an exponent denotes how many ten.
equal factors are employed. The result of the multiplications, is called the 5 th Power of a.

Division:
how expressed.
§ 298. The division of one quantity by auother is indicated by simply writing the divisol below the dividend, after the manner of a fraction ; by placing it on the right of the dividend with a horizontal line and two dots between them; or by placing it on the right with a rertical line between them: thus either form of expression,

Three

 forms.$$
\frac{b}{a}, \quad b \div a, \quad \text { or } \quad b \mid a
$$

indicates the division of b by a.

Roots: § 299. The extraction of a root is indicated how Ind- by the sign $\sqrt{ }$. This sign, when used by itself indicates the lowest root, viz. the square root.

If any other root is to be extracted, as the third, fourth, fifth, \&c., the figure marking the degree Index; of the root is written above and at the left of where writ the sign ; as,
$\sqrt[3]{ }$ cube root, $\sqrt[4]{ }$ fourth root, \&c.
The figure so written, is called the Index of the root.

We have thus given the very simple and general language by which we indicate every one

Languagh for the five operations of the six operations that may be performed on an algebraic quantity, and every process in $A l$ gebra involves one or other of these operations.

MINUS SIGN.
$\S 300$. The algebraic symbols are divided into
Algebraic language: two classes entirely distinct from each other, viz. the letters that are used to designate the how divided. quantities which are the subjects of the science, and the signs which are employed to indicate certain operations to be performed on those quantities. We have seen that all the algebraic processes are comprised under addition, subtraction, multiplication, division, and the extraction of roots; and it is plain, that the nature of a quantity is not at all changed by prefixing to it the sign which indicates either of these opera-

Algebraic processes:
their number.

Do not change the nature of tho quantitles.
tions. The quantity denoted by the letter a, for example, is the same, in every respect, whatever sign may be prefixed to it; that is, whether it be added to another quantity, subtracted from it, whether multiplied or divided by any number, or whether we extract the square or cube or any

Algebraic signs: how regarded.

Plus and Minus. other root of it. The algebraic signs, therefore, must be regarded merely as indicating operations to be performed on quantity, and not as affecting the nature of the quantities to which they may be prefixed. We say, indeed, that quantities are plus and minus, but this is an abbreviated language to express that they are to be added or subtracted.

Principles of the science:

From what aeduced.

Example.

What we wish to discover.
§ 301. In Algebra, as in Arithmetic and Geometry, all the principles of the science are deduced from the definitions and axioms; and the rules for performing the operations are but directions framed in conformity to such principles: Having, for example, fixed by definition, the powes of the minus sign, viz. that any quantity before which it is written, shall be regarded as to be subtracted from another quantity, we wish to discover the process of performing that subtraction, so as to deduce therefrom a general principle, from which we can frame a rule applicable to all similar cases.

SUBTRACTION.

§ 302. Let it be required, for example, to subtraction
subtract from b the difference be- $\mid b$ tween a and c. Now, having writ-

Process. $a-c$ ten the letters, with their proper signs, the language of Algebra expresses that it is the difference only between a and c, which is to be taken from b; and if this difference were known, we could make the subtraction at once But the nature and generality of the algebraic symbols, enable us to indicate operations, merely, and we cannot in general make reductions until we come to the final result. In what general way, therefore, can we indicate the true difference?

If we indicate the subtraction of
from b, we have $b-a$; but then
$b-a+c$ we have taken away too much from b by the number of units in c, for it was not a, but the difference between a and c that was to be subtracted from b. Having taken away too much, the remainder is too small by c : hence, if c be added, the true remainder will be expressed by $b-a+c$.

Now, by analyzing this result; we see that the sign of every term of the subtrahend has been changed; and what has been shown with re-

Operstions indicater.

Generalization. others standing in the same relation: hence, we have the following general rule for the subtraction of algebraic quantities:

Change the sign of every term of the subtra-
nd, or conceive it to be changed, and then unite
Change the sign of every term of the subtra-
Role. hend, or conceive it to be changed, and then unite the quantities as in addition.

MULTiPlication.

Multiplication.
$\S 303$. Let us now consider the case of multiplication, and let it be required to multiply $a-b$ by c. The algebraic language expresses

Signification of the language. that the difference between a and b is to be taken as many times as there are units in c. If we knew

$$
\frac{a-b}{c} \frac{a}{a c-b c}
$$ this difference, we could at once perform the multiplication. But by what gen-

Process:

 eral process is it to be performed without finding that difference? If we take a, c times, the product will be $a c$; but as it was only the difference between a and b, that was to be multiplied by c,rto nature. this product $a c$ will be too great by b taken c times; that is, the true product will be expressed by $a c-b c$: hence, we see, that, If a quantity having a plus sign be multiplied by another quantity having also a plus sign, the sign of the product will be plus; and

Principle for the signs.
spect to these quantities is equally true of all
if a quantity having a minus sign be multiplied by a quantity having a plus sign, the sign of the product will be minus.
§ 304. Let us now take the most general General case case, viz. that in which it is required to multiply $a-b$ by $c-d$.

Let us again observe that the algebraic language denotes that $a-b$ is
to be taken as many times as there are units in $c-d$; and if these two differences were known, their product

Its form. would at once form the product required.

First: let us take $a-b$ as many times as there First step. are units in c; this product, from what has already been shown, is equal to $a c-b c$. But since the multiplier is not c, but $c-d$, it follows that this product is too large by $a-b$ taken d times; that is, by $a d-b d$: hence, the first prod- Second step uct diminished by this last, will give the true product. But, by the rule for subtraction, this difference is found by changing the signs of the How taken. subtrahend, and then uniting all the terms as in addition: hence, the true product is expressed by $a c-b c-a d+b d$.

By analyzing this result, and employing an Analysis of the reoulh. abbreviated language, we have the following gen-
eral principle to which the signs conform in multiplication, viz.:

General I'rinciple

Plus multiplied by plus gives plus in the product ; plus multiplied by minus gives minus; minus multiplied by plus gives minus; and minus multiplied by minus gives plus in the product.

Remark.

Particular case.
$\S 305$. The remark is often made by pupils that the above reasoning appears very satisfactory so long as the quantities are presented under the above form; but why will $-b$ multiplied by $-d$ give plus $b d$? How can the product of two negative quantities standing alone be plus?

Minus sign:
In the first place, the minus sign being prefixed to b and d, shows that in an algebraic sense they do not stand by themselves, but are conthe interpre nected with other quantities; and if they are ration. not so connected, the minus sign makes no difference; for, it in no case affects the quantity, hut merely points out a connection with other quantities. Besides, the product determined above, being independent of any particular value attributed to the letters a, b, c, and d, must be Form of the of such a form as to be true for all values; and product:
must be true or quantities of any value. hence for the case in which a and c are both equal to zero. Making this supposition, the product reduces to the form of $+b d$. The rules for the signs in division are readily deduced from
the definition of division, and the principles already laid down.

Signs in - livision

ZEROANDINFINITY.

§ 306. The terms zero and infinity have given rise to much discussion, and been regarded as presenting difficulties not easily removed. It may not be easy to frame a form of language that shall convey to a mind, but little versed in mathematical science, the precise ideas which these terms are designed to express; but we are unwilling to suppose that the ideas themselves arc beyond the grasp of an ordinary intellect. The terms are used to designate the two limits of Space and Number.
§ 30\%. Assuming any two points in space, and joining them by a straight line, the distance between the points will be truly indicated by the length of this line, and this length may be expressed numerically by the number of times which the line contains a known unit. If now, the points are made to approach each other, the length of the line will diminish as the points come nearer and nearer together, until at length,

Illustration, showing the meaning or the term Zero. when the two points become one, the length of the line will disappear, having attained its limit,

Zero and Infinity.

Ideas nob abstruse.
which is called zero. If, on the contrary, the points recede from each other, the length of the

Ilustration, showing the meaning of the term Infinity. line joining them will continually increase ; but so long as the length of the line can be expressed in terms of a known unit of measure, it is not infinite. But, if we suppose the points removed, so that any known unit of measure would occupy no appreciable portion of the line, then the length of the line is said to be Infinite.
$\S 308$. Assuming one as the unit of number, and admitting the self-evident truth that it may be increased or diminished, we shall have no

The terms Zero and Infinity applied to numbers. difficulty in understanding the import of the terms zero and infinity, as applied to number. For, if we suppose the unit one to be continually diminished, by division or otherwise, the fracIlustration. tional units thus arising will be less and less, and in proportion as we continue the divisions, they will continue to diminish. Now, the limit or boundary to which these very small fractions approach, is called Zero, or nothing. So long as the fractional number forms an appreciable part of one, it is not zero, but a finite fraction; and the term zero is only applicable to that which forms no appreciable part of the standard.

If, on the other hand, we suppose a number to be continually increased, the relation of this
number to the unit will be constantly changing. So long as the number can be expressed in terms of the unit one, it is finite, and not infiInfinity; nite; but when the unit one forms no appreciable part of the number, the term infinite is used to express that state of value, or rather, that limit of value.
$\S 309$. The terms zero and infinity are therefore employed to designate the limits to which decreasing and increasing quantities may be made to approach nearer than any assignable quantity; but these limits cannot be compared, Are limits. in respect to magnitude, with any known standard, so as to give a finite ratio.
§ 310. It may, perhaps, appear somewhat par- why limits? adoxical, that zero and infinity should be defined as "the limits of number and space" when they are in themselves not measurable. But a limit is that "which sets bounds to, or circumscribes;" Defnition of and as all finite space and finite number (and such only are implied by the terms Space and of space and Number), are contained between zero and inNumber finity, we employ these terms to designate the limits of Nurnber and Space.
OF THE EQUATION.

Deductive reasuning.
$\S 311$. We have seen that all deductive reasoning involves certain processes of comparison, and that the syllogism is the formula to which those processes may be reduced.* It has also

Comparison of quantitiee.

Condition. been stated that if two quantities be compared together, there will necessarily result the condition of equality or inequality. The equation is an analytical formula for expressing equality.

Subject of equations: how divided. into two parts. The first, consists in finding First part: the equation ; that is, in the process of expressing the relations existing between the quantities considered, by means of the algebraic symbols
statement. and formula. This is called the Statement of second part: the proposition. The second is purely deductive, and consists, in Algebra, in what is called

Solution.

 the solution of the equation, or finding the value of the unknown quantity; and in the other branches of analysis, it consists in the discusUnsusslon of sion of the equation ; that is, in the drawing out an equation. from the equation every thing which it is capable of expressing.§313. Maкing the statement, or finding the equation, is merely analyzing the problem, and expressing its elements and their relations in the language of analysis. It is, in truth, collating the facts, noting their bearing and connection, and inferring some general law or principle which leads to the formation of an equation.

The condition of equality between two quantities is expressed by the sign of equality, which

Equils or two quantities: is placed between them. The quantity on the left of the sign of equality is called the first member, and that on the right, the second member of the equation. The first member corresponds to the subject of a proposition ; the sign of equality is copula and part of the predicate, signify-

How expressed. 1st member. 21 member

Subject. Predicata. ing, is equal to. Hence, an equation is merely a proposition expressed algebraically, in which Prposition. equality is predicated of one quantity as compared with another. It is the great formula of analysis.
§314. We have seen that every quantity is Abstrnct. either abstract or concrete:* hence, an equa- concrete. tion, which is a general formula for expressing equality, must be either abstract or concrete.

An abstract equation expresses merely the

[^22]relation of equality between two abstract quan tities: thus,

Abstract equation.

$$
a+b=x
$$

is an abstract equation, if no unit of value be assigned to either member; for, until that be done the abstract unit one is understood, and the formula merely expresses that the sum of a and b is equal to x, and is true, equally, of all quantities.

Concrete equation.

But if we assign a concrete unit of value, that is, say that a and b shall each denote so many pounds weight, or so many feet or yards of length, x will be of the same denomination, and the equation will become concrete or denominate.

F7ve operstions may be nerformed.
$\S 315$. We have seen that there are six operations which may be performed on an algebraic quantity.* We assume, as an axiom, that if the same operation, under either of these processes, be performed. on both members of an equation, the equality of the members will not be changed. Hence, we have the five following
nxioms.

First.

1. If equal quantities be added to both members of an equation, the equality of the members will not be destroyed.

[^23]2. If equal quantities be subtracted from both

Second members of an equation, the equality will not be destroyed.
3. If both members of an equation be multiplied by the same number, the equality will not be destroyed.
4. If both members of an equation be divided by the same number, the equality will not be destroyed.
5. If both members of an equation be raised to the same power, the equality of the members will not be changed.
6. If the same root of both members of an Sixth. equation be extracted, the equality of the members will not be destroyed.

Every operation performed on an equation will fall under one or other of these axioms, and they afford the means of solving all equations which admit of solution.
§ 316. The term Equal, in Algebra, implies that each of the two quantities of which it is predicated, contains the same unit an equal number of times. So in Geometry, two figures are equal when they contain the same unit of measure an equal number of times. If in addition to this equality of measure, they are capable of superposition, they are then said to be equal in all their parts. try.
Equal.
$\S 31 \%$. We have thus pointed out some of the marked characteristics of analysis. In Algebra,

Classes of quantities in Algebra. the elementary branch, the quantities, about which the science is conversant, are divided, as has been already remarked, into known and unknown, and the connections between them, expressed by the equation, afford the means of tracing out further relations, and of finding the values of the unknown quantities in terms of the known.

In the other branches of analysis, the quanti.

How divided in the other branches of Analysis.
ties considered are divided into two general classes, Constant and Variable ; the former preserving fixed values throughout the same process of investigation, while the latter undergo changes of value according to fixed laws; and from such changes we deduce, by means of the equation, common principles, and general properties applicable to all quantities.

Correspondence in methods of ressoning accounted for.
§ 318. The correspondence between he processes of reasoning, as exhibited in the subject of general logic, and those which are employed in mathematical science, is readily accounted for, when we reflect, that the reasoning process is essentially the same in all cases; and that any change in the language employed, or in the subject to which the reasoning is applied, does not
at all change the nature of the process, or materially vary its form.
$\S 319$. We shall not pursue the subject of algebra any further; for, it would be foreign to the purposes of the present work to attempt more than to point out the general features and characteristics of the different branches of mathematical science, to present the subjects about which the science is conversant, to explain the peculiarities of the language, the nature of the reasoning processes employed, and of the connecting links of that golden chain which binds

How far extended. together all the parts, forming an harmonious whole.

```
SUGGESTIONS FOR THOSE WHO TEACH ALGEBRA.
```

1. Be careful to explain that the letters employed, are the mere symbols of quantity. That of, and in themselves, they have no meaning or signification whatever, but are used merely as the signs or representatives of such quantities as they may be employed to denote.
2. Be careful to explain that the signs which are used are employed merely for the purpose of indicating the six operations which may be performed on quantity; and that they indicate

Letters are but mere symbols.

Signs indt cate opera.

Hions
operations merely, without at all affecting the nature of the quantities before which they are placed.

Jetters and signs elements of language.
raic formula :
3. Explain that the letters and signs are the elements of the algebraic language, and that the language itself arises from the combination of these elements.
4. Explain that the finding of an algebraic formula is but the translation of certain ideas, first expressed in our common language, into the language of Algebra ; and that the interpreits interpret tation of an algebraic formula is merely transt ation. lating its various significations into common language.
Language.
5. Let the language of Algebra be carefully studied, so that its construction and significations may be clearly apprehended.
coefficient, Exponent.
6. Let the difference between a coefficient and an exponent be carefully noted, and the office of each often explained; and illustrate fre quently the signification of the language by attributing numerical values to letters in various algebraic expressions.

Sumilar quantities.
7. Point out often the characteristics of similar and dissimilar quantities, and explain which may be incorporated and which cannot.
Minus sign.
8. Explain the power of the minus sign, as shown in the four ground rules, but very par-
ticularly as it is illustrated in subtraction, multiplication, and division.
9. Point out and illustrate the correspondence between the four ground rules of Arithmetic and Algebra; and impress the fact, that their differences, wherever they appear, arise merely from differences in notation and language : the principles which govern the operations being the same in both.
10. Explain with great minuteness and particularity all the characteristic properties of the equation ; the manner of forming it ; the different kinds of quantity which enter into its composition; its examination or discussion; and the different methods of elimination.
11. In the equation of the second degree, be careful to dwell on the four forms which em. brace all the cases, and illustrate by many examples that every equation of the second de. gree may be reduced to one or other of them. Explain very particularly the meaning of the term root; and then show, why every equation of the first degree has one, and every equation of the second degree, two. Dwell on the properties of these roots in the equation of the second degree. Show why their sum, in all the Their sum forms, is equal to the coefficient of the second term, taken with a contrary sign ; and why their

Its proper ties.
Arithmetic and Algebra compared.

Equation er the second degree.

Its formas.

Its roote.

Their prod- product is equal to the absolute term with a uct contrary sign. Explain when and why the roots are imaginary.
General Principles: and rule is based on a principle of science, and that an intelligible reason may be given for it. Find that reason, and impress it on the mind

Should be explained. of your pupil in plain and simple language, and by familiar and appropriate illustrations. You will thus impress right habits of investigation and study, and he will grow in knowledge. The broad field of analytical investigation will be opened to his intellectual vision, and he will have made the first steps in that sublime science
They lead to general laws. which discovers the laws of nature in their most secret hiding-places, and follows them, as they reach out, in omnipotent power, to control the motions of matter through the entire regions of occupied space.

CHAPTER ∇.

$\S 320$. The entire science of mathematics is conversant about the properties, relations, and

Science of

 Mathemstics. measurement of quantity. Qnantity has already been defined. It embraces everything which can be increased, diminished, and measured.In the elementary branches of mathematics, quantity is regarded as made up of parts. If the ous quantity. parts are equal, each is called a unit, and the measure of a quantity is the number of times which it contains its unit. Snch quantities are called discontinuous; because, in passing from one state of value to another, we go by the steps of the unit, and hence, pass over all values lying between adjacent units.

Thus, if we increase a line from one foot to Example in forty feet, by the continued addition of one foot, we touch the line, in our computation, only at its two extremities, and at thirty-nine intermediate points, of which any two adjacent points are one foot apart. In the scale of ascending numbers, $1,2,3,4,5,6$, etc., we pass over all quantities less
than that which is denoted by the unit, one. Discontinuous quantities are generally expressed by numbers, or by letters, which stand for numbers.

Continuous

Discontinuons.
and
$\S 321$. In the higher branches of mathematics, the laws which regulate and determine the changes of quantity, from one state of value to another, are quite different. Suppose, for example, that instead of considering a right line to be made up of forty feet, or of 480 inches, or of 960 half inches, or of 1920 quarter inches, or of any number of equal parts of the inch, we regard it as a quantity having its origin at 0 , and increasing according to such a law, as to pass through or assume, in succession, all values between 0 and forty feet. This supposition gives us the same distance as before, but a very different law of formation. A quantity so formed or generated, is called a continuous quantity. Hence,

A discontinuous quantity is one which is Dincontinu. made up of parts, and in which the changes, in ous. passing from one state of value to another, can be expressed in numbers, either exactly, or approximately; and

A continuous quantity is one which in Concinuor changing from one state of value to another, according to a fixed law, passes through or
assumes, in succession, all the intermediate values.

Thus, the time which elapses between 12 and Spacecor1 o'clock, or between any two given periods, is continuous. All space is continuous, and every quantity may be regarded as continuous, which can be subjected to the required law of change.

LIMITS.

§322. The Limit of a variable quantity is a Limita quantity towards which it may be made to approach nearer than any given quantity, and which it reaches, under a particular supposition.

LIMITS OF DISCONTINUOUS QUANTITY.

$\S 323$. The limits of a discontinuous quantity
General are merely uumerical boundaries, beyond which the quautity cannot pass.

For positive quantities, the minimum limit is Liste. 0 , and the maximum limit, infinity. For negative quantities, they are 0 , and minus infinity; aud generally, using the algebraic language, the limits of all quantities are,

Minimum limit, - infinity; maximum limit, + infinity.
We can illustrate these limits, and also what Examples.
we mean by the terms, 0 and infinity, plus or minus, by reference to the trigonometrical functions. Thus, when the arc is 0 , the sine is 0 . When the arc increases to 90°, the sine attains its maximum value, the radius, R. Passing into
nlustra- the second quadrant, the sine diminishes as the tions. arc increases, and when the arc reaches 180°, the sine becomes 0 . From that point, to 270°, the sine increases numerically, but decreases algebraically, and at 270°, its minimum value is $-R$. From 270° to 360°, the sine decreases numeric-
Limits. ally, but increases algebraically. Hence, the numerical limits of the sine, are 0 and R; and its algebraic limits, $-R$ and $+R$.

Let us now consider the tangent. For the are
Tangent. 0 , the tangent is 0 . If the arc be increased from 0 towards 90°, the length of the tangent will increase and as the arc approaches 90°, the prolonged radius or secant becomes more nearly parallel with the tangent; and finally, at 90° it becomes absolutely parallel to it, and the length of the tangent becomes greater than any assignable line. Then we say, that the tangent of 90° is infinite; and we designate that quantity by ∞. After 30°, the tangent becomes minus, and continues so to the end of the second quadrant, where it becomes -0 ; and at 270° it becomes equal to, $+\infty$. The secant of 90° is also equal to
$+\infty$; and of 270°, to $-\infty$. These illustrations When it indicate the significations of the terms, zero and infinity. They denote the limits towards which reaches ite variable quantities may be made to approach nearer than any given quantity, and which limits Limits. are reached under particular suppositions.
§ 324. The term, givon, or assignable quantity, quantity. denotes any quantity of a limited and fixed value.

The term, infinitely great, or infinity, denotes Infnite. a quantity greater than any assignable quantity of the same kind.

The term, infinitely small, or infinitesimal, de- Inaniteslmal. notes a quantity less than any assignable quantity of the same kind.
continuous quantities.
$\S 325$. A continuous quantity has already been continuous. defined (Art. 325). By its definition it has two attributes:

1st. That it shall change its value according to Quantity. a fixed law; and

2d. That in changing its value, between any Attribates. two limits, it shall pass through all the intermediate values.
§ 326. Consecutive Values.-Two values of Consecative.
a continuous quantity are consecutive when, if the greater be diminished, or the less increased, according to the law of change, the two values will become equal.

Let A be the origin of a system of rectangular co-ordinate axes, and C a given point on the axis of X.
If we suppose a point to move from A,

Quantities generated. in the plane of the axes, and with the further condition, that it shall continue at the same distance from the point C, it will generate the circumference of a circle, $A P B D E A$, beginning and terminating at the point A. The moving point is called the generatrix.

The circumference of this circle may also be generated in another way, thus:
Denote the straight line $A D$ by $2 R$, and sup-
pose a point to move uniformly from A to D. Denote the distance from A to any point of
the line $A D$, by x : then, the other segment

Tangent will be denoted by $2 R-x$. Now, at every point of $A D$, suppose a perpendicular to be drawn to $A D$. Denote each perpendicular by y, and suppose y always to have such a value as to satisfy the equation

$$
y^{2}=2 R x-x^{2}
$$

Under these hypotheses, it is plain that the extremities of the ordinate y will be found in the circumference of the circle, which will be a continuous quantity. The ordinate y will be contained, in the first quadrant, between the numerical limits of $y=0$ and $y=+R$; in the second, between the numerical limits of $y=$ $+R$, and $y=0$; in the third, between $y=-0$ and $y=-R$; and in the fourth, between $y=$ $-R$ and $y=-0$.

The circumference $A B D E A$, may be regarded under two points of view:

First. As a discontinuous quantity, expressed in numbers: viz. by $A D \times 3.1416$; or it may be expressed in degrees, minutes, or seconds, viz. 360°, or 21600^{\prime}, or $1296000^{\prime \prime}$. In the first case, 1st Case. the step, or change, in passing from one value to the next, will be the unit of the diameter $A D$.

2d Case. In the second, it will be one degree, one minute, or one second. In neither case, will the parts of the circumference less than the unit be reached by the computation. Or,
Secondly. Secondly: We may regard the circumference as a continuous quantity, beginning and terminating at A. Under this supposition, the gene-
When dis- ratrix will occupy, in succession, every point of continuous. the circumference, and will, in every position, satisfy the equation

$$
y^{2}=2 R x-x^{2}
$$

Hence, if we measure a quantity by a finute

IdAnitesimal. unit, that quantity is discontinuous; but if we measure it by an infinitesimal unit, the quantity becomes continuous.

TANGENT LINE AND LIMIT.

§ 32\%. Take any point of the circumference of

Tangent ${ }^{*}$ limit. this circle, as P, whose co-ordinates are x^{\prime} and y^{\prime}, and a second point H, whose co-ordinates are $x^{\prime \prime}$ secant line. and $y^{\prime \prime}$, and through these points draw the secant line, $H P G$.

Then, $H J=y^{\prime \prime}-y^{\prime}$, and $P J=x^{\prime \prime}-x^{\prime}$; and $\frac{H J}{P J}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}=$ tang. of the angle $H P J$, or

HGC.

Let us now suppose a tangent line $T P$ to be drawn to the circle, touching it at P. If we suppose the point H to approach the point P, it is plain that the value of $y^{\prime \prime}$ will approach to the value of y^{\prime}, and the value of $x^{\prime \prime}$ to that of x^{\prime}; and when the point H becomes consecutive with the point $P, y^{\prime \prime}$ and y^{\prime} will become consecutive, and so also will $x^{\prime \prime}$ and x^{\prime}. When the point H becomes consecutive with the point P, the secant line, $H G$, becomes the tangent line $P T$. For, tangent. since the arc is a continuous quantity, no point of it can lie between two of its consecutive values; and hence, at P, no point of the curve can lie above the line $T P$; therefore, by the definitions of Geometry, $T P$ is a tangent line to the circle at the point P.

But the definition of a tangent line to a circle, Tangent of

Elementary in elementary Geometry, viz. that it touches the Geometry. circumference in one point, is incomplete. It is provisional only. For, as we now see, the tangent line touches the circle in two consecu-
Position of tive points, which, in discontinuous quantity, are regarded as one, because the distance between them, expressed numerically, is zero.

If we prolong $J H$ till it meets the tangent line at 0 , we see that,
secant. $\frac{J O}{x^{\prime \prime}-x^{\prime}}=$ tangent of $O P J=$ tangent of $O T C$; and that,

$$
\frac{J H}{x^{\prime \prime}-x^{\prime}}=\text { tangent of } H P J=\text { tangent of } H G C
$$

When the point H approaches the point P When the nearer than any given distance, the angle $H G C$ will approach the angle $P T C$ nearer than any given angle, and when H becomes consecutive

Secant

 with P, the angle $H G C$ will become equal to the angle $P T C$, which is therefore its limit. Under this hypothesis, the point H falls on the tangent line, and $J H$ becomes equal to $J O$. Under the same hypothesis, $y^{\prime \prime}$ and y^{\prime} become consecutive, and also $x^{\prime \prime}$ and x^{\prime}; hence, $y^{\prime \prime}-y^{\prime}$ becomes less than any given quantity; and so,a tangent. also, does $x^{\prime \prime}-x^{\prime}$. This difference between con- secutive values is expressed by simply writing the letter d before the variable. Thus, the dif-
ference of the consecutive values of y is de- Value denoted by $d y$; and is read differential of y; and the difference between the consecutive values of x is denoted by $d x$, and is read differ- of the ential of x. Hence, we have

$$
\frac{d y}{d x}=\text { tangent } P T C ; \text { viz. }
$$

the tangent of the angle which the tangent at the point P makes the axis of X.

By the definition of a limit, $d y$ becomes the Limit limit of $y^{\prime \prime}-y^{\prime}$, and $d x$ the limit of $x^{\prime \prime}-x^{\prime}$, under

he supposition that $y^{\prime \prime}$ and y^{\prime}, and $x^{\prime \prime}$ and x^{\prime} bepome, respectively, consecutive. The term limit, therefore, used to designate the ultimate difference between two values of a variable, denotes the actual difference between its two conseculive ralnes: this difference is infinitely small,

When it is reached. small.
and consecutive with zero. For, if after $y^{\prime \prime}$ has become consecutive with y^{\prime}, it be again diminished, according to the law of change expressed by the equation

Equation.

$$
y^{2}=2 R x-x^{2},
$$

When the it will, from the definition of consecutive values, become equal to y^{\prime}, and then $x^{\prime \prime}$ will become equal x^{\prime}, and we shall have
tangent

$$
y^{\prime \prime}-y^{\prime}=0 \quad \text { and } \quad x^{\prime \prime}-x^{\prime}=0
$$

Under this hypothesis the line $P T$ has, at P,
becomes a but a single point, common with the circumference of the circle; it then ceases to be a tangent, and becomes any secant line passing through

Secant.

 this point and intersecting the circumference in a second point.Generally true.
$\S 328$. What we have here shown in regard to the circumference of the circle, and its tangent, is equally true of any other curve and its tangent, as may be shown by a very slight modification of the process.

A straight line; when a tangent.

The fact, that a straight line tangent to a curve, has two consecutive points common with it, appears in all the elementary problems of tangents. The conditions are, an equality botween the co-ordinates of the point of contact
and the first differential co-efficients, at the same point, of the straight line and curve. These conditions fix the consecutive points common to the straight line and curve.

Analysis, therefore, by its searching and mi- Anslysia. croscopic powers-by looking into the changes which take place in quantity, as it passes from one state of value to another, develops proper- its power. ties and laws which lie beyond the reach of the numerical language. Thus, the distance between two consecutive points, on the circumference of a circle, cannot be expressed by numbers; for, however small the number might be, chosen to express such a distance, it could be diminished, and hence, there would be intermediate points.

The introduction, therefore, of continuous quan- Continuous tity, into the science of mathematics, brought with it new ideas and the necessity of a new language. Quantity, made up of parts, and expressed by numbers, is a very different thing from the continuous quantity treated of in the Differential and Integral Calculus. Here, the law of continuity, in the change from one state of value to another, is the governing principle, and carries with it many consequences.

Time and space are the continuous quantities with which we are most conversant. If we take

What followed its introduction.

THme and Space. a moment in time, and look back to the past, or
forward to the future, there is no interruption. The law of continuity is unbroken, and the in-

Examples
of the infinite, in either direction. The attraction of gravitation is a continuous force; and all the motions to which it gives rise, follow the law of
law of continuity. All growth and development, in the vegetable and animal kingdoms, so far as we know, conform to this law. 'This, therefore, is

Continuity. the great and important law of quantity, and the Higher Calculus is conversant mainly about its development and consequences.

CONSEQUENCES OF THE LAW OF CONTINUITY.

1. The most striking consequence of the law

Consequences. of continuity, is the fact, that whatever be the quantity subjected to this law, or whatever be the law of change, the difference between any two
First. of the consecutive values is an infinitesimal. and hence cannot be expressed by numbers.
2. Since a continuous quantity may be of any value, and be subjected to any law of change, the
second. infinitesimal which expresses the difference between any two of its consecutive values, is a vari.
able quantity; and hence, may liave any value between zero and its maximum limit.
3. The law of continuity in quantity, therefore, introduces into the science of mathematics
a class of variables called infinitesimals, or differ-

Third entials. Every rariable quantity has, at every state of its ralue, an infinitesimal corresponding to it. This infinitesimal is the connecting link, in the law of continuity, and will vary with the value of the quantity and the law of change.
4. In the Infinitesimal Calculus, the properties, relations, and measurement of quantities are developed by considering the laws of change to which they are subjected. The elements of the language employed, are symbols of those infinitesimals.

NEWTON'S METHOD OF TREATING CONtinuous quantity.*

Lemara I.

§ 329. Quantities, and the ratios of quantities, Rations which in any finite time converge continually to equality, and before the end of that time approach nearer, the one to the other, than by any given difference, become ultimately equal.

Fourth.

If you deny it, suppose them to be ultimately unequal, and let D be their ultimate difference. Therefore, they cannot approach nearer to equality than by that given difference D; which is against the supposition.

Lemma II.

§330. If in any figure, AacE, terminated by

Statement right lines $A a, A E$, and the curve acE, there be inscribed any number of parallelograms $A b, B c, C d$, etc., comprehended under the equal bases, $A B, B C$, $C D$, etc., and the sides $B b, C c, D d$, etc., parallel to one side Aa of the fig-
of the ure; and the parallelograms aKbl, bLcm, cMdn, dDEo are completed; then, if the breadth of these par-
general allelograms be supposed to be diminished, and their number to be augmented
 in finitum; I say, that the ultimate ratios Proposition. which the inscribed figure $A K b L c M d D$, the circumscribed figure AalbmondoE and the curvilinear figure $A a b c d E$ will have to one another, are ratios of equality.

For, the difference of the inscribed and circumscribed figures is the sum of the parallelo-
grams, $K l, L m, M n, D o$, that is, (from the equal- of the ity of their bases), the rectangle under one of their bases $K b$ and the sum of their altitudes Λa; that is, the rectangle $A B l a$. But this rectangle, because its breadth $A B$ is supposed diminished in finitum, becomes less than any given space. And therefore, (by Lemma I.) the figures inscribed and circumscribed, become ultimately Proposition equal one to the other; and much more will the intermediate curvilinear figure be ultimately equal to either.

Lemma III.

$\S 331$. The same ultimate ratios are also ra- statement. tios of equality, when the breadths $A B, B C, D C$, etc., of the parallelograms are unequal and are all diminished in finitum.

For, suppose $A F$ to be the greatest breadth, Demonstraand complete the parallelogram FAaf. This parallelogram will be greater than the difference of the inscribed and circumscribed figures; but because its breadth $A F$ is diminished in finitum, it will become less than any given rectangle.
general
Cor. 1. Hence, the ultimate sum of these evanescent parallelograms will, in all parts, coincide Proposition. with the curvilinear figure.

Cor. 2. Much more will the rectilinear figure

Ulimately equal. comprehended under the chords of the evanescent arcs, $a b, b c, c d$, etc., ultimately coincide with the curvilinear figure.

Also, figures.

Cor. 3. And also, the circumscribed rectilinear figure comprehended under the tangents of the same arcs.

Limit of areas.

Cor. 4. And therefore, these ultimate figures (as to their perimeters, $a c E$) are not rectlinear, but curvilinear limits of rectilinear figures.

Lemma IV.
Statement § 332. If in two figures, AacE, PprT, you inof scribe (as before) two ranks of parallelograms, an Proposition.

Figure.

equal number in each rank, and, where their breadths are diminished, in finitum, the ultimate ratios of the parallelograms in one figure to those in the other, each to each respectively, are tho
same; I say, that those two figures, AacE, PprT, are to one another in that same ratio.

For, as the parallelograms in the one figure are Demonstra severally to the parallelograms in the other, so (by composition) is the sum of all in the one to the sum of all in the other; and so is the one figure to the other; because (by Lemma III.), the former figure to the former sum, and the latter figure to the latter sum, are both in the ratio of equality.

Cor. Hence, if two quantities of any kind are anyhow divided into an equal number of parts, and those parts, when their number is augmented, and their magnitude diminished in finitum, have a given ratio one to the other, the first propositions to the first, the second to the second, and so on in order, the whole quantities will be one to the other in that same given ratio. For if in the figures of this lemma, the parallelograms are taken one to the other in the ratio of the parts, the sum of the parts will always be as the sum of the parallelograms; and therefore, supposing the number of the parallelograms and parts to be angmented, and their magnitudes diminished in finitum, those sums will be in the ultimate ratio of the parallelogram in the one figure to the corresponding pariallelogram in the other; that is (by the supposition), in the ultimate ratio of tion.
true for all kinds of quantity.
The above

号

any one part of the one quantity to the corresponding part of the other.

Lemma V.

§333. In similar figures all sorts of homolostatement. gous sides, whether curvilinear or rectilinear, are proportional; and their areas are in the duplicate ratio of their homologous sides.

Lemma VI.

§334. If the arc $A C B$, given in position, is statement subtended by the chord $A B$, and in any point A in the middle of the continued curvature, is touched by a right line $A D$, produced both ways; then, if
general the points A and B approach one another
 and meet, [become consecutive] I say, the angle Iroposition. $B A D$ contained between the chord and the tangent will be diminished in finitum, and ultimately will vanish.

For, if it does not vanish, the arc $A C B$, will Demonstra- contain, with the tangent $A D$, an angle equal to tion a rectilinear angle; and therefore, the curvature
at the point A will not be continued, which is against the supposition.

Lemma VII.

$\S 335$. The same thing being supposed, I say slatement. that the ultimate ratio of the arc, chord, and tangent, any one to any other, is the ratio of equality.

For, while the point B approaches towards the Demonstrapoint A considen duced to the remote points b and d, and parallel to the secant $B D$ draw $b d$: and let the arc $A c b$ be always similar to the arc $A C B$. Then, supposing the points A and B to coincide, [become consecutive], the angle $d A b$ will vanish, by the preceding lemma; and therefore,

Figure. the right lines $A b, A d$ (which were always finite), and the intermediate arc $A c b$, will coincide, and become equal among themselves. Wherefore, the right lines $A B, A D$, and the Conclusion intermediate arc $A C B$ (which are always proportional to the former), will ranish, and ultimately acquire the ratio of equality.

Corollary.
Cor. 1. Whence, if through B we draw $B F^{7}$ parallel to the tangent, always cutting any right line $A F$ paśsing through A and F, this line $B F$ will be, ul-
 timately, in the ratio of equality with the evanescent arc $A C B$; because, completing the paral-
Ratio. lelogram $A F B D$, it is always in the ratio of equality with $A D$.

Cor. 2. And if through B and A more right Utimate lines be drawn $B E, B D, A F, A G$, cutting the tangent $A D$ and its parallel $B F$,

Ratio of the ultimate ratio of the ab-
 scissas $A D, A E, B F, B G$, and of the arc $A B$,
Equality. any one to any other, will be the ratio of equality.

Cor. 3. And therefore, in any reasoning about

Ulimate Ratios. ultimate ratios, we may freely use any one of those lines for any other.
§ 336. Scholium.-Those things which have

Scholinm. been demonstrated of curve lines, and the superficies which they comprehend, may be easily applied to the curve superficies, and contents of solids. These lemmas are premised to avoid the
tediousness of deducing perplexed demonstrations to avoid the $a d$ absurdum, according to the method of the ancient geometers. For demonstrations are more contracted by the method of indirisibles: but because the indirisibles seem somewhat harsh, and therefore, that method is reckoned less geometrical, I chose rather to reduce the demonstrations of the following propositious to the first and last Heductio ad sums and ratios, of nascent and evanescent quantities; that is, to the limits of those sums and ratios; and so, to premise, as short as I could, the demonstration of those limits. For, hereby the same thing is performed as by the method of indivisibles; and now those principles being demonstrated, we may use them with more safety. Therefore, if hereafter I should happen to consider quantities as made up of particles, or should use little curve lines for right ones, I would not be understood to mean indivisibles, but evanescent divisible quantities; not the sums and ratios of determinate parts, but always the limits of sums and ratios; and that the force of such dem- Indivisible onstrations always depends on the method laid down in the foregoing lemmas.

Perhaps it may be objected, that there is no objection ultimate proportion of evanescent quantities; because the proportion, before the quantities have to vanished, is not the ultimate, and when they are

Ultimate

Quantities
nswered.

Ulitimate

 ratio;vanished, is none. But by the same argument it may be alleged, that a body arriving at a certain place, and there stopping, has no ultimate velocity; because, the velocity, before the body comes to the place, is not its ultimate relocity; when it has arrived, is none. But the answer is easy; for, by the ultimate velocity is meant, that with which the body is moved, neither before it arrives at its last place and the motion ceases, nor after; but, at the very instant it arrives; that is, that velocity with which the body arrives at its last place, and with which the motion ceases. And in like manner, by the ultimate ratio of evanescent quantities is to be understood the ratio of the quantities not before they vanish, not afterwards, but with which they vanish. In like manner, the first ratio of nascent quantities is that with which they begin

How it is is a problem strictly geometrical. But whatever is geometrical we may be allowed to use in de-
termining and demonstrating any other thing Geometrithat is likewise geometrical.

FRUITS OF NEWTON'S THEORY.

§33\%. The main difficulties in the higher mathematics, have arisen from inadequate or erroneous notions of ultimate or evanescent quantities, and of the ratios of such quantities. After two hundred years of discussion, of experiment and of trial, opinions yet differ widely in regard to them, and especially in regard to the forms of language by which they are expressed.

One cannot approach this subject, whicl has so long engaged the earnest attention of the greatest minds known to science, without a feeling of awe and distrust. But tapers sometimes light corners which the rays of the sun do not reach ; and as we must adopt a theory in a system of scientific instruction, it is perhaps due to others, that we should assign our reasons therefor.
§338. An ultimate, or evanescent quantity, which is the basis of the Newtonian theory, is

Newton's Theory.

Dificalty
of the
subject. not the quantity "before it van:shes, nor aftervards; but, with which it vanishes."

Ultimate Quantity.

I have sought, in what precedes and follows,
Very to define this quantity-to separate it from all other quantities-to present it to the mind in mportant. a crystallized form, and in a language free from all ambiguity; and then to explain how it becomes the key of a sublime science.

As a first step in this process, I have defined
First step. continuous quantity (Art. 322), and this is the only class of quantity to which the Differential
Next step. Calculus is applicable. The next step was to define consecutive values, and then, the difference between any two of them (Art. 327). These differ-

Ultimate of Newton.

Infinitesimals. ences are the ultimate or evanescent quantities of Newton. They are not quantities of determinate magnitudes, but such as come from variables that have been diminished indefinitely. They form a class of quantities by themselves, which have their own language and their own laws of change; and they are called, Infinitcsimals, or Differentials.

Since the difference between any two values of On what a variable quantity, which are near together, but not consecutive, will depend on the relative Difference values of the quantities and the law of change, it is plain, that when we pass to the limit of this
of values difference, such limit will also depend for its value on the variable quantity and the law of dopends. change: and bence, the infinitesimals are un-
equal among themselves, and any two of them may have, the one to the other, any ratio whatever.

These infinitesimals will always be quantities quantities of the same kind as those from which they were derived; for the kind of quantity which expresses a difference, is the same, whether the dif- same kind. ference be great or small.

LIMITS.

§ 339. Marked differences of opinion exist Limits among men of science in regard to the true Difference notion of a limit; and hence, definitions have of ween given of it, differing widely from each other. We have adopted the views of Newton, so clearly set forth in the lemmas and scholium which we have quoted from the Principia. He uses, as How defned stated in the latter part of the scholium, the term limit, to designate the ultimate or evanescent value of a variable quantity ; and this value is by Newtch. reached under a particular hypothesis. Hence, our definition (Art. 323).

Let us now refer again to the case of tangency.

Let $A P B$ be any curre whatever, and $T P F^{\prime}$ a case of tangent touching it at the point P. Draw any chord of the curve, as $P B$, and through P and B tangency
draw the ordinates $P D$ and $B H$. Also draw $P C$ parallel to $T H$.
again con. Then, $\frac{C F}{P C}=$ tang. $F P C=$ tang. the angle $P T H$, which the tangent line $T P F$ makes with sidered. the axis $T H$.

But, $\frac{B C}{P C}=$ tangent of the angle $B P C$.
If now we suppose $B H$
secant: to move towards $P D$, the angle $B P C$ will approach the angle $F P C$, which is
now it its limit. When $B H$ becomes consecutive with $P D, B C$ will reach its ultimate value: and since by

becomes a Lemma VII., the ultimate ratio of the arc, chord, and tangent, any one to any other, is the ratio of equality, it follows that they must then all be equal, each to each. Under this hypothesis the point B must fall ou the tangent line $T P F$; that is, the chord and tangent, in their ultimate state, have two points in common; hence they coincide; and as the two points of the are are consecutive, it must also coincide with the chord and
and when. tangent.
This, at first sight, seems impossible. But if it be granted that two points of a curve can be
consecutive and that a straight line can be drawn through any two points, we have the solution. If we deny that two points of the curve can be consecutive, we deny the law of continuity.

The method of Leibnitz adopted the simple
Method hypothesis that when the point B approached the point P, infinitely near, the lines $C F$ and $C B$ become infinitely small, and that then, either may be taken for the other; under which hypothesis the ratio of $P C$ to $C B$, becomes the ratio of $P C$ Leibnitz. to $C F$.

WHAT THE LEMMAS OF NEWTON PROVE.
$\S 340$. The first lemma, which is "the cornerstone and support of the entire system," predicates ultimate equality between any two quantities which continually approach each other in value, and under such a law of change, that, in any finite time they shall approach nearer to each other than by any given difference. The common quantity towards which the quantities separately converge, is the limit of each and both of them, and this limit is always reached under a particular supposition.

Lemmas II., III., and IV. indicate the steps by which we pass from discontinuous to continuous

Newtor.

Lemmas

That quantity. They introduce us, fully, to the law
they of continuity. They demonstrate the great truth, that the curvilinear space is the common limit of the inscribed and circumscribed parallelograms, and that this limit is reached under the hypothesis that the breadth of each parallelogram is infinitely small, and the number of them, infinitely great. Thus we reach the law of continuity; and each parallelogram becomes a con-

Links in
the law of necting link, in passing from one consecutive value to another, when we regard the curvilinear area as a variable. That there might be no misapprehension in the matter, corollary 1, of Lemma III., affirms, that, "the ultimate sum of these evanescent parallelograms, will, in all parts, coin-
Continuity. cide with the curvilinear figure." Corollary 4, also, affirms that, "therefore, these ultimate figures (as to their perimeters, $a c E$), are not rectilinear, but curvilinear limits of rectilinear fig-

Common

 ures:" that is, the curvilinear area $A E a$ is the common limit of the inscribed and circumscribed parallelograms, and the curve Edcba, the common limit of their perimeters. This can only take place when the ordinates, like $D d, C c, B k$, become consecutive; and then, the points $0, n$, m and l fall on the curve.The law of continuity carries with it, necesWhat the sarily, the ideas of the infinitely small and the
in regard to quantity, one is the reciprocal of continuity the other. The inch of space, as well as the curred line, or the currilinear surface of geo- implies. metry, has within it the seminal principles of this law.

If we regard it as a continuous quantity, hav- continnity. ing increased from one extremity to the other, without missing any point of space, we have, the law of change, the infinitely small (the difference between two consecutive values, or the link in the law of continuity), and the infinitely great, in the number of those values which make up the entire line.

It has been urged against the demonstrations objection of the lemmas, that a mere inspection of the figures proves the demonstrations to be wrong. For, say the objectors, there will be, always, obviously, "a portion of the exterior parallelograms lying without the curvilinear space." This is certainly true for any finite number of parallelograms.

But the demonstrations are made under the objections express hypothesis, that, "the breadth of these parallelograms be supposed to be diminished, and their number to be augmented, in finitum." Under this supposition, as we have seen, the points, o, n, m, and l, fall in the curve, and then snawered. the areas named are certainly equal.

NEWTON'S METHOD IN HARMONY WITH tHAT OF LeIBNITZ.

$\S 341$. The method of treating the Infinitesi-
Harmony mal Calculus, by Leibnitz, subsequently ampliof fied and developed by the Marquis L'Hopital, is Methods. based on two fundamental propositions, or demands, which were assumed as axioms.
${ }^{-}$I. That if an infinitesimal be added to, or sub-
First tracted from, a finite quantity, the sum or difference will be the same as the quantity itself. This demand. demand assumes that the infinitesimal is so small that it cannot be expressed by numbers.
II. That a curved line may be considered as

Second. made up of an infinite number of straight lines, each one of which is infinitely small.

It is proved in Lemma II. that the sum of the

What the ultimate rectangles $A b, B c, C d, D 0$, etc., will be equal to the curvilinear area $A a E$. This can only be the case when each is "less than any given space," and their number infinite. What is meant by the phrase, "becomes less than any given space"? Certainly, a space too small to be

proves.

 expressed by numbers; for, if. we have such a space, so expressed, we can diminish it by diminishing the number, which would be contrary to
Ultimate

 the hypothesis. Tinis ultimate value, then, of either of the rectangles, is numerically zero: andhence, its addition to, or subtraction from, any finite quantity, would not change the value. The ultimates of Newton, therefore, conform to the first demand of Leibnitz, as indeed they should do; for, they are not numerical quantities, but connecting links in the law of continuity.

It is proved in Lemma VII., that the ultimate ratio of the arc, chord, and tangent, any one to any other, is the ratio of equality: hence, their ultimate values are equal. When this takes place, the two extremities of the chord become consecutive, and the remote extremity of the tangent falls on the curve, and coincides with the remote extremity of the chord: that is, F falls on the curve, and $P B$ and $P F$, coincide with each other, and with the curre. The length of this arc, chord, or tangent, in their ultimate state, is

$$
\sqrt{d x^{2}+d y^{2}}
$$

a value familiar to the most superficial student of the Calculus.

Behold, then, one side of the inscribed polygon, when such side is infinitely small, and the number of them iufinitely great.

That such quantities as we have considered, hare a conceivable existence as subjects of thought, and do or may have, proximatively, an

Coincidence actual existence, is clearly stated in the latter
part of the scholium quoted from the Principia.
value, It is there affirmed: "This is the ultimate velocity. And there is a like limit in all quantities and proportions which begin and cease to be. And since such limits are certain and definite, to determine the same is a problem strictly geometrical. But whatever is geometrical we may be allowed to use in determining and demonstrating any other thing that is likewise geome-

Newton and Leibnitz. trical."* Hence, the theory of Newton conforms to the second demand in the theory of Leibnitz.

DIFFERENT DEFINITIONS OF A LIMIT.

§ 342. The common impression that mathe-

Different deflnitions of limits.

Different views of the Calculus. matics is an exact science, founded on axioms too obvious to be disputed, and carried forward by a logic too luminous to admit of error, is certainly erroneous in regard to the Infinitesimal Calculus. From its very birth, about two hundred years ago, to the present time, there have been very great differences of opinion among the best informed and acutest minds of each generation, both in regard to its fundamental principles and to the forms of logic to be employed in their development. The conflicting opinions

[^24]appear, at last, to have arranged themselves into Lwo classes; and these differ, mainly, on this question: What is the correct apprehension and Differencea. right definition of the word limit? All seem to agree that the methods of treating the Calculus must be governed by a right interpretation of this word. The two definitions which involve this conflict of opinion, are these:

1. The limit of a variable quantity is a quan- Limit. tity towards which it may be made to approach nearer than any given quantity and which it reaches under a particular supposition.

And the following definition, from a work on the Infinitesimal Calculus by M. Duhamel, a M. Duha nel. French author of recent date:
2. The limit of a variable is the constant quan- 2 d Definitity which the variable indefinitely approaches, but never reaches.

This definition finds its necessary complement in the following definition by the same author:
"We call," says he, "an infinitely small quantity, or simply, an infinitesimal, every variable

Complement. magnitude of which the limit is zero."

The difference between the two definitions is

Difference between definitions considered. simply this: by the first, the variable, ultimately, reaches its limit; by the second, it approaches the limit, but never reaches it. This apparently slight difference in the definitions, is the divid-
ing line between classes of profound thinkers; and whoever writes a Calculus or attempts to Difference. teach the subject, must adopt one or the other of these theories. The first is in harmony with the theories of Leibnitz and Newton, which do not differ from each other in any important particu-

General limits. lar. It seems also to be in harmony with the great laws of quantity. In discontinous quantity, especially, we certainly include the limits in our thoughts, and in the forms of our lan-

What we mean by them. guage. When we speak of the quadrant of a circle, we include the arc zero and the arc of ninety degrees. Of its functions, the limits of the sine, are zero and radius; zero for the are zero, and radius for the arc of ninety degrees. For the tangents, the limits are zero and infinity; zero for the are zero, and infinity for the arc of ninety degrees ; and similarly, for all the other

For all quantities. functions. For all numbers, the limits are zero and infinity; and for all algebraic quantities, minus infinty and plus infinity.

Then we consider continuous quantity, we
For contin- find the second definition in direct conflict with well called, "the corner-stone and foundation of the Principia." It is very difficult to comprehend that two quantities may approach each other in value, and in any given time become
nearer equal than any given quantity, and yet inconalict never become equal ; not even when the approach can be continued to infinity, and when the law of change imposes no limit to the decrease of their difference. This, certainly, is contrary to the theory of Newton.
Take, for example, the tangent line to a curre,

Example
of the a second point. If now, the second point be made to approach the point of tangency, both definitions recognize the angle which the tangent tangent line. line makes with the axis of abscissas as the limit of the angles which the secants make with the same axis, as the second point of secancy ap-
proaches the tangent point. By the first defini-

First tion, the supposition of consecutire points causes the secant line to coincide with, and becone the tangent. But by the second definition, the secant line can never become the tangent, though it may approach to it as near as we please. This is in contradiction to all the analytical methods of determining the equations of tangent lines to curves. See corollaries $1,2,3$, and 4 of Lemma III., in which all the quantities referred to are supposed to reach their limits.

By the second definition, there would seem \cdot to be an impassable barrier placed between a vari- deanition:
what it able quantity and its limit. If these two quantities are thus to be forever separated, how can they be brought under the dominion of a com-
does. mon law, and enter together into the same equation? And if they cannot, how can any property of the one be used to establish a property of the other? The mere fact of approach, though
Result. infinitely near, would not seem to furnish the necessary conditions.

The difficulty of treating the subject in this
Diffcalty. way is strikingly manifested in the supplementary definition of an infinitesimal. It is defined, simply, as "every variable magnitude whose limit is zero."

Now, may not zero be a limit of every variable

Not definite. which has not a special law of change? Is not this definition too general to give a Definite idea of the individual thing defined--an infinitesimal? We have no crystallized notions of a class, till we apprehend, distinctly, the individushould be. als of the class-their marked characteristicstheir harmonies and their differences ; and also, their laws of relation and connection.

Having given and illustrated these definitions,
M. Duha- M. Duhamel explains the methods by which we nel's methods not can pass from the infinitesimals to their limits; satisfactory and when, and under what circumstances, those limits may be substituted and used for the quan-
tities themselves. Those methods have not seemed to me as clear and practical as those of Newton and Leibnitz.

It is essential to the unity of mathematical Unity in science, that all the definitions, should, as far as possible, harmonize with each other. In all discontinuous quantities, the boundaries are in- Mathematics cluded, and are the proper limits. In the hyperbola, for example, we say that the asymptote is the limit of all tangent lines to the curve. But the asymptote is the tangent, when the point of contact is at an infinite distance from the vertex: and any tangent will become the asymptote, under that hypothesis.

If s denotes any portion of a plane surface, y Differential. the ordinate and x the abscissa, we have the known formula :

$$
d s=y d x
$$

If we integrate between the limits of $x=0$, and $x=a$, we have, by the language of the

Surface. Calculus

$$
\int_{0}^{a} d s=\int y d x
$$

which is read, "integral of the surface between limits of $x=0$, and $x=a, "$ in which both bcundaries enter into the result.

Limits of Area. $\quad x=0$, and terminates where $x=a$, and not at values infinitely near those limits.
what quantities are denoted by 0 .
§ 343. Our acquaintance with the character 0 , What quan- begins in Arithmetic, where it is used as a necessary element of the arithmetical language, and
tities are
denoted
by 0 .

May not
be the 0 of Arithmetic.

New langaage necessary.

How it 18 where it is entirely without value, meaning, absolutely nothing. Used in this sense, the largest finite number multiplied by it, gives a product equal to zero; and the smallest finite number divided by it, gives a quotient of infinity.

When we come to consider variable and continuous quantity, the infinitesimal, or element of change from one consecutive value to another, is not the zero of Arithmetic, though it is smaller than any number which can be expressed in terms of one, the base of the arithmetical system. Hence, the necessity of a new language. If the variable is denoted by x, we express the infinitesimal by $d x$; if by y, then by $d y$; and similarly, for other variables.

Now, the cxpressions $d x$ and $d y$, have no cxact synonyms in the language of numbers. As compared with the unit 1 , neither of them can be ex-

frsmed.

 pressed by the smallest finite part of it. Hence,when it becomes necessary to express such quantities in the language of number, they can be denoted only by 0 . Therefore, this 0 , besides its first function in Arithmetic, where it is an element of language, and where the value it denotes is absolutely nothing, is used, also, to denote the numerical values of the infinitesimals. Hence, it is correctly defined as a character which some- Sometimes times denotes absolutely nothing, and sometimes an infinitely small quantity. We now see, clearly, what appears obscure in Elementary Algebra, Inaniteat that the quotient of zero divided by zero, may be zero, a finite quantity, or infinity.

> INSCRIBED AND CIRCUMSCRIBED POLYGONS UNITE ON THE CIRCLE.
§ 344. The theory of limits, developed by Newton, is not only the foundation of the higher mathematics, but indicates the methods of using the Infinitesimal Calculus in the elementary branches. This Calculus being unknown to the ancients, their Geometry was encumbered by the tedious methods of the reluctio ad absurdum. Newton says in the scholium : "These lemmas It avoids the are premised to avoid the tediousness of dedu- $\begin{gathered}\text { redactio ad } \\ \text { absardam. }\end{gathered}$ cing perplexed demonstrations ad absurdum, according to the method of the ancient geometers."

Inscribed polygon.群.

What 0 means

Lemma I., which is the "corner-stone and
Lemma I. foundation of the Principia," is also the golden link which connects geometry with the higher mathematics.

It is demonstrated in Euclid's Elements, and What is also in Davies' Legendre, Book V., Proposition X., that "Two regular polygons of the same number of sides can be constructed, the one circum-
demon-
strated.

How the Proof is made.

What Newton sffirms. scribed about the circle and the other inscribed with in it, which shall differ from each other by less than any given surface."

The moment it is proved that the exterior and interior polygons may be made to differ from each other by less than any given surface, Lemma I. steps in and affirms an ultimate equality between them. And when does that ultimate equality take place, and when and where do they become coincident? Newton, in substance affirms, in his lemmas, "on their common limit, the circle," and under the same hypothesis as causes the inscribed and circumscribed parallelograms to become equal to their common limits, the curvilinear area. If Lemma I. is true, the perimeters of the two polygons will ultimately coincide on the circumference of the circle, and
Δ side of the become equal to it. But what then is the side of polygon. each polygon? We answer, the distance between two consecutive points of the circumference of
the circle. And what is that value? We answer, the $\sqrt{d x^{2}+\sqrt{2} y^{2}}$.

But it is objected, that this introduces us to objections the infinitely small. True, it does; but we cannot reach a continuous quantity without it. The sides of the polygons, so long as their number to the theory is finite, will be straight lines, each diminishing in value as their number is increased. While this is so, the perimeter of each will be a discontinnous quantity, made up of the equal sides, each having a finite value, and each being the unit of change, as we go around the perimeter.
discussed
and As each of these sides is diminished in value, and their number increased, the discontinuous quantity approaches the law of continuity, which considerea. it reaches, under the hypothesis, that each side becomes infinitely small and their number infinitely great. Behold the polygons embracing where the each other on their common limit, the circle, and the perimeter of each coinciding with the cirtwo polycumference. Thus, the principles of the Infinitesimal Calculus take their appropriate place in Elementary Geometry, to the exclusion of the cumbrons methods of the reductio ad absurdum of the ancients, and the whole science of Mathe-
gons em-
brace each
other. matics is brought into closer harmonies and nearer relations.

DIFFERENTIAL AND INTEGRAL CALCULUS.
$\S 345$. We have seen that the Differential and Differential Integral Calculus is conversant about continuous quantity. We hare also seen, that such quantities are developed by considering their laws of change. We have further seen, that these laws of change are traced by means of
Calculus the differences of consecutive values, taken two and two, as the variables pass from one state of
defined. value to another. Indeed, those differences are but the foot-steps of these laws.

LANGUAGE OF THE CALCULUS.

$\S 346$. We are now to explain the language by
Language which the quantities are represented, by which their changes are indicated, and by which their
of the laws of change are traced. The constant quantities which enter into the Calculus are represented by the first letters of the alphabet, a, b,
Calculus. c, etc., and the variables, by the final letters, x, y, z, etc.

When two variable quantities, y and x, are
Variable connected in an equation, either of them may quantities. be supposed to increase or decrease uniform${ }^{\top} y$; such variable is called the independent variuble, because the law of change is arbitrary, and in-
deprendent of the form of the equation. This Function of variable is generally denoted by x and called each other. simply, the variable. Under this hypothesis, the change in the variable y will depend on the form of the equation: hence, y is called the dependent variable, or function. When such relations exist How they between y and x, they are expressed by an equation of the form

$$
y=F^{\prime}(x), \quad y=f(x), \text { or, } \quad f(x, y)=0
$$

may be
which is read, y a function of x. The letter F, or f, is a mere symbol, and stands for the word function. If y is a function of x, that is, changes with it, x may, if we please, be regarded as a function of y; hence,

One quantity is a function of another, when the two are so connected that any change of value, in either, produces a corresponding change in the ather.

It has been already stated (Art. 328), that the difference between two consecutive values of a variable quantity, is indicated by simply writing the letter d as a symbol, before the letter denoting that variable; so that $d x$ denotes the difference between two consecutive values of the variable quantity denoted by x, and $d y$ the difference between the corresponding consecutive values of

Form of the variable quantity denoted by y. These are language. mere forms of language, expressing laws of change.

How are the changes in these variable quan-

Standard of Measure. tities, expressed by the infinitesimals, to be measured? Only by taking one of them as a standard -and finding how many times it is contained in the other.

The independent variable is always supposed Independent to increase uniformly; hence, the difference bevariable. tween any two of its consecutive values, taken

Change uniform. at pleasure, is the same : therefore, this difference, which does not vary in the same equation, or under the same law of change, affords a convenient standard, or unit of measure, and in the Calculus, is always used as such.

The change in the function y, denoted by $d y$, Correspond- is always compared with the corresponding change of the independent variable, denoted by $d x$, as a standard, or unit of measure. But the change in any quantity, divided by the unit of in the measure, gives the rate of change : hence, $\frac{d y}{d x}$ is the rate of change of the function y. This rate of change is called the differential coefficient of y regarded as a function of x, and performs a very important part in the Calculus. The quannot nuiform. tities $d y$ and $d x$, being both infinitesimals, are
of the same species: hence, their quotient is an abstract number. Therefore, the differential coefficient is a connecting link between the infinitesimals and numbers.

If any quantity whatever be divided by its quotient by unit of measure, the quotient will be an abunit of stract number; and if this quotient be multiplied by the unit of measure, the product will be the concrete quantity itself. Hence, if we multiply $\frac{d y}{d x}$, by the unit of measure $d x$, we have $\frac{d y}{d x} d x$, which always denotes the difference between two consecutive ralues of y; and therefore, is the differential of y. Hence, the differential of a vari- Differentia able function is equal to the differential coefficient multiplied by the differential of the independent rariable.

The method, therefore, of dealing with infinitesimals, is precisely the same as that employed method. for discontinuous quantities.

We assume a unit of measure whicl is as arbitrary as one, in numbers, or, as the foot, yard, or rod, in linear measure, and then we compare all other infinitesimals with this standard. We thus rbtain a ratio which is an abstract number, and if this be multiplied by the unit of measure, we go back to the concrete quantity from which the ratio was derived.

We have thus sketched an ontline of the Insketch finitesimal Calculus. We have named the quantities about which it is conversant, the laws which govern their changes of value, and the language by which these laws are expressed. We have found here, as in the other branches of

Inanitesimal mathematics, that an arbitrary quantity, assumed as a unit of measure, is the base of the entire system; and that the system itself is made up of the various processes employed in finding the
calealus. ratio of this standard, to the quantities which it measures.

APPENDIX.

a course of mathematics-what it should be.
$\S 347$. A course of mathematics should present the outlines of the science, so arranged, ex- Mathemstics plained, and illustrated as to indicate all those general methods of application, which render it effective and useful. This can best be done by a series of works embracing all the topics, and in which each topic is separately treated.
$\S 348$. Such a series should be formed in accordance with a fixed plan; should adopt and

How it should be. formed. use the same terms in all the branches; should be written throughout in the same style; and present that entire unity which belongs to the subject itself.
§349. The reasonings of mathematics and Reamoningy the processes of investigation, are the same in
the same in every branch, and have to be learned but once, all branches. if the same system be studied throughout. The

Different kinds of notation. different kinds of notation, though somewhat unlike in the different subjects of the science, are, in fact, but dialects of a common language.

I anguage need be learned but once.

In what consists the difficulty ?
§ 350 . If, then, the language is, or may be made essentially the same in all the branches of mathematical science ; and if there is, as has been fully shown, no difference in the processes of reasoning, wherein lies that difficulty in the acquisition of mathematical knowledge which is often experienced by students, and whence the origin of that opinion that the subject itself is dry and difficult?

A $\quad \S 351$. Just in proportion as a branch of knowgeneral law, if known, renders a subject easy.

Faculties required in mathematics. ledge is compactly united by a common law, is the facility of acquiring that knowledge, if we observe the law, and the difficulty of acquiring it, if we pay no attention to the law. The study of mathematics demands, at every step, close attention, nice discrimination, and certain judgment. These faculties can only be developed

How first

 cellivated: by culture. They must, like other faculties, pass through the states of infancy, growth, and maturity. They must be first exercised on sensible and simple objects; then on elementary ab.stract ideas ; and finally, on generalizations and the higher combinations of thought in the pure

On what finally exercised. ideal.
$\S 352$. Have educators fully realized that the first lessons in numbers impress the first elements of mathematical science? that the first connections of thought which are there formed become the first threads of that intellectual warp which gives tone and strength to the mind?

Have they yet realized that every process is, or should be, like the stone of an arch, formed to

All the subjects cor nected. fill, in the entire structure, the exact place for which it is designed? and that the unity, beauty, and strength of the whole depend on the adaptation of the parts to each other? Have they sufficiently reflected on the confusion which must arise from attempting to put together and harmonize different parts of discordant systems? to blend portions that are fragmentary, and to unite into a placid and tranquil stream trains of thought which have not a common source?
$\S 353$. Some have supposed that Arithmetic may be well taught and learned without the aid of a text-book; or, if studied from a book, that A textbook the teacher may advantageously substitute his own methods for those of the author, inasmuch
to bo folbw'sd.

Reasons.

Even a better method, when substituted, may not harmonize with the other parts of the work.
as such substitution is calculated to widen the field of investigation, and excite the mind of the pupi' tc new inquiries.

Admitting that every teacher of reasonable intelligence, will discover methods of communicating instruction better adapted to the peculiarities of his own mind, than all the methods employed by the author he may use; will it be safe, as a general rule, to substitute extemporaneous methods for those which have been subjected to the analysis of science and the tests of experience? Is it safe to substitute the results of conjectural judgments for known laws? But if they are as good, or better even, as isolated processes, will they answer as well, in their new places and connections, as the parts rejected?
Mustration. Will the balance-wheel of a chronometer give as steady a motion to a common watch as the more simple and less perfect contrivance to which all the other parts are adapted?
§ 354. If these questions have significance, we One of the have found at least one of the causes that have reasons why mathematics is difficult. impeded the advancement of mathematical science, viz. the attempt to unite in the same course of instruction fragments of different systems; thus presenting to the mind of the learner the same terms differently defined, and the same
principles differently explained, illustrated, and applied. It is mutual relation and connection Connection which bring sets of facts under general laws ; it very imporis mutual relation and connection of ideas which form a process of science; it is the mutual connection and relation of such processes which constitute science itself.
$\S 355$. I would by no means be understood as expressing the opinion that a student or teacher of mathematics should limit his researches to a single author; for, he must necessarily read and study many. I speak of the pupil alone, who must be taught one method at a time, and taught that well, before he is able to compare different methods with each other.

ORDER OF THE SUBJECTS-ARITHMETIC.

§356. Arithmetic is the most useful and Arithmetic simple branch of mathematical science, and is the first to be taught. If, however, the pupil has time for a full course, I would by no means recommend him to finish his Arithmetic before

Connectiog with Algebres studying a portion of Algebra.

ALGEBRA.

4lgebra:

How it should be studied: preceding subject; so that all the subjects can best be studied in connection with those which preceae and follow.

Should precede Geometry :

Geometry should be commenced.

When
§ 358. Algebra, in a regular course of instruction, should precede Geometry, because the elementary processes do not require, in so high a why. degree, the exercise of the faculties of abstraction and generalization. But when we have completed the equation of the second degree, the processes become more difficult, the abstractions more perfect, and the generalizations more extended. Here then I would pause and commence Geometry.

GEOMETRY.

Chonvetry.
§359. Geometry, as one of the subjects of mathematical science, has been fully considered in Book II. It is referred to here merely to inark its place in a regular course of instruction

TRIGONOMETRY-PLANE AND SPHERICAL.

\S 360. The next subject in order, after Geometry, is Trigonometry : a mere application of the principles of Arithmetic, Algebra, and Geometry to the determination of the sides and angles of triangles. As triangles are of two kinds, viz. those formed by straight lines and those formed by the arcs of great circles on the surface of a sphere; so Trigonometry is divided into two parts: Plane and Spherical. Plane 'Trigonometry explains the methods, and lays down the necessary rules for finding the remaining sides and angles of a plane triangle, when a sufficient number are known or given. Spherical Trigo- spherical. nometry explains like processes, and lays downsimilar rules for spherical triangles.

SURVEYINGAND LEVEILING.

$\S 361$. The application of the principles of Trigonometry to the measurement of portions of the earth's surface, is called Surveying; and similar applications of the same principles to the determination of the difference between the distances of any two points from the centre of the earth, is called Levelling. These subjects, which Ievelling tollow Trigonometry, not only embrace the va-

Trigonome ury:

What it is.

Two kinute.

Plane.
spherica.

What they embrase.
rious methods of calculation, but also a description of the necessary Instruments and Tables. They should be studied immediately after Trigonometry; of which, indeed, they are but applications.

DESCRIPTIVEGEOMETRY.

Descriptive (ieometry:
§ 362. Descriptive Geometry is that branch of mathematics which considers the positions of the geometrical magnitudes, as they may exist in space, and determines these positions by referring the magnitudes to two planes called the Planes of Projection.

- nature.

It is, indeed, but a development of those gen eral methods, by which lines, surfaces, and volumes may be presented to the mind by means of drawings made upon paper. The processes of

What its study accomplishes. this development require the constant exercise of the conceptive faculty. All geometrical magnitudes may be referred to two planes of projection, and their representations on these planes will express to the mind, their forms, extent, and also their positions or places in space. From
How. these representations, the mind perceives, as it were, at a single view, the magnitudes themselves, as they exist in space ; traces their boundaries, measures their extent, and sees all their parts separately and in their connection.

In France, Descriptive Geometry is an important element of education. It is taught in most France. of the public schools, and is regarded as indispensable to the architect and engineer. It is, indeed, the only means of so reducing to paper, and presenting at a single view, all the complicated parts of a structure, that the drawing or representation of it can be read at a glance, and all the parts be at once referred to their appropriate places. It is to the engineer or architect not only a general language by which he can record

Its value as a practical branch. and express to others all his conceptions, but is also the most powerful means of extending those conceptions, and subjecting them to the laws of exact science.

SHADES, SHADOWS, AND PERSPECTIVE.

§ 363. The application of Descriptive Geometry to the determination of shades and shadows, as they are found to exist on the surfaces of bodies, is one of the most striking and useful ap-

Shadee, Shadows, and Perspectiva plications of science; and when it is further extended to the subject of Perspective, we have all that is necessary to the exact representation of objects as they appear in nature. An accurate perspective and the right distribution of light and shade are the basis of every work of

Their see the fine arts. Without them, the sculptor and the painter would labor in vain: the chisel of Canova would give no life to the marble, nor the touches of Raphael to the canvas.

Analytical geometry.

Analytical Geometry. ject in a regular course of mathematical study, though it may be studied before Descriptive Geometry. The importance of this subject cannot 1ts be exaggerated. In Algebra, the symbols of Importance: quantity have generally so close a connection with numbers, that the mind scarcely realizes
Valuable as a study. the extent of the generalization; and the power of analysis, arising from the changes that may take place among the quantities which the symbols represent, cannot be fully explained and developed.

But in Analytical Geometry, where all the
Reasons. magnitudes are brought under the power of analysis, and all their properties developed by the combined processes of Algebra and Geometry, we are brought to feel the extent and potency of Generaiza- those methods which combine in a single equation. tion every discovered and undiscovered property of every line, straight or curved, which can be formed by the intersection of a cone and plane.

To develop every property of the Conic Sec- Its extent tions from a single equation, and that an equation only of the second degree, by the known processes of Algebra, and thus interpret the results, is a far different exercise of the mind from that which arises from searching them out by the tedious and disconnected methods of separate propositions. The first traces all from an inextaustible fountain, by the known laws of analytical investigation, applicable to all similar cases, while the latter adopts particular processes applicable to special cases only, without any general law of connection.

DIFFERENTIAL AND INTEGRAL CALCULUS.

$\S 365$. The Differential and Integral Calculus presents a new view of the power, extent, and applications of mathematical science. It should be carefully studied by all who seek to make high attainments in mathematical knowledge, or

Differenua, and Integrad Calculus.

What persons should study is. who desire to read the best works on Natural and Experimental Philosophy. It is that field of mathematical investigation, where genius may exert its highest powers and find its most certain rewards. It reaches, with a microscopic certainty the most hidden laws of quantity, and brings them within the range of Mathematical Analysis.

Continuous Continuous Quantity, under all its forms, and quantity. with all its infinite laws of change, can be examined and analyzed only by the Calculus.

Langaage
The language constructed for the development of the laws and properties of quantities com-
of
discontinu-
ous quantity be expressed by infinitesimals, which are mere links in the law of change, and which form no
inapplicable. posed of ascertained and definite parts, is inapplicable to quantity changing according to the law of continuity. Here, the changes can only appreciable part of the quantity itself. We are thus introduced to a new form of Mathematical Science. It is this science which deals with What the Time, and Space, and Force, and Motion, and Velocity, and indeed, with all Continuous Quanlanguage tity. The elements of this science are infinitesimal; but the science itself reaches through all deals with. time and all space, revealing the mysteries and the omnipotence of universal law.

BOOK III.

UTILITY OF MATHEMATICS.

CHAPTER 1 .

fIE UTILITY OF MATHEMATICS CONSIDERED AS A MEANS OF ISTELLECTUAC TRAINING AND CULTURE.
\S 366. The first efforts in mathematical sci- Firsteffors ence are made by the child in the process of counting. He counts his fingers, and repeats ing for a time with the aid of his fingers or his marbles, dispenses with these cumbrous helps, and
the words one, two, three, four, five, six, seven, eight, nine, ten, until he associates with these
words the ideas of one or more, and thus acquires his first notions of number. Hence, the idea of number is first presented to the mind by means of sensible objects; but when once clearly apprehended, the perception of the sensible objects fades away, and the mind retains only the abstract idea. Thus, the child, after count- Generallzstion.

Abstraction. employs only the abstract ideas, which his mind embraces with clearness and uses with facility.

Analytical $\S 36 \%$. In the first stages of the analytical method: methods, where the quantities considered are vees sensible represented by the letters of the alphabet, senobjects at first. sible objects again lend their aid to enable the mind to gain exact and distinct ideas of the things considered; but no sooner are these ideas obtained than the mind loses sight of the things themselves, and operates entirely through the instrumentality of symbols.
veruniry. § 368. So, also, in Geometry. The right line may first be presented to the mind, as a black First impres mark on paper, or a chalk mark on a blacksions by sen
sible objects. board, to impress the geometrical definition, that "A straight line does not change its direction between any two of its points." When this definition is clearly apprehended, the mind needs no further aid from the eye, for the inage is forever imprinted.

A plane. § 369. The idea of a plane surface may be Definition: impressed by exhibiting the surface of a polished mirror; and thus the mind may be aided in How illustio- apprehending the definition, that "a plane surted. face is one in which, if any two points be taken
the straight line which joins them will lie wholly in the surface." But when the definition is understood, the mind requires no sensible object to aid its conception. The ideal alone fills the mind, and the image lives there without any connection with sensible objects.
$\S 370$. Space is indefinite extension, in which all bodies are situated. A volume is any limited

Space. Volume: portion of space embracing the three dimensions of length, breadth, and thickness. To give to the mind the true conception of a volume, the aid of the eye may at first be necessary; but the idea being once impressed, that a volume, in a strictly mathematical sense, means only a portion of space, and has no reference to the matter with which the space may be filled, the mind turns away from the material object, and dwells alone on the ideal.
$\S 371$. Although quantity, in its general sense, is the subject of mathematical inquiry, yet the anguage of mathematics is so constructed, that .he investigations are pursued without the slightest reference to quantity as a material substance. We have seen that a system of symbols, by which quantities may be represented, has been

Quautity

1,anguage
How constructed.

Symbols: adopted, forming a language for the expression
of ideas entirely disconnected from material nhjects, and yet capable of expressing and repre-

Noture of the language:

What it accomplishes. senting such objects. This symbolical language, at once copious and exact, not only enables us to express our known thoughts, in every department of mathematical science, but is a potent means of pushing our inquiries into unexplored regions, and conducting the mind with certainty to new and valuable truths.

Advantages of an exact language.

Herschel's views.
$\S 372$. The nature of that culture, which the mind undergoes by being trained in the use of an exact language, in which the connection hetween the sign and the thing signified is unmistakable, has been well set forth by a living author, greatly distinguished for his scientific attainments.* Of the pure sciences, he says
"Their objects are so definite, and our notions of them so distinct, that we can reason about them with an assurance that the words and signs of our reasonings are full and true representatives of the things signified; and, conse-

Exact language provents arror. quently, that when we use language or signs in argument, we neither by their use introduce extraneous notions, nor exclude any part of the case before us from consideration. For exam-

[^25]ple : the words space, square, circle, a hundred, \&c., convey to the mind notions so complete in themselves, and so distinct from every thing else, that we are sure when we use them we know and have in view the whole of our own meaning. It is widely different with words expressing natural objects and mixed relations. Take, for instance, Iron. Differert persons attach very different ideas to this word. One who nas never heard of magnetism has a widely different notion of iron from one in the contrary predicament. The vulgar who regard this metal as incombustible, and the chemist, who sees it burn with the utmost fury, and who has other reasons for regarding it as one of the most combustible bodies in nature; the poet, who uses The poet it as an emblem of rigidity; and the smith and engineer, in whose hands it is plastic, and moulded like wax into every form ; the jailer, who prizes it as an obstruction, and the electrician, who sees in it only a channel of open communication by which that most impassable of obstacles, the air, may be traversed by his imprisoned fluid,have all different, and all imperfect notions of the same word. The meaning of such a term is like the rainbow-everybody sees a different one, and all maintain it to be the same."
"It is, in fant. in this double or incomplete

Incomplete meaning the source of error.

Mathematics free from auch errors.

Requires a strict use of language.

Results.
sense of words, that we must look for the origin of a very large portion of the errors into which we fall. Now, the study of the abstract sciences, such as Arithmetic, Geometry, Algebra, \&c., while they afford scope for the exercise of reasoning about objects that are, or, at least, may be conceived to be, external to us; yet, being free from these sources of error and mistake, accustom us to the strict use of language as an instrument of reason, and by familiarizing us in our progress towards truth, to walk uprightly and straightforward, on firm ground, give us that proper and dignified carriage of mind which could never be acquired by having always to pick our steps among obstructions and loose fragments, or to steady them in the reeling tempests of conflicting meanings."

Two ways of acquiring knowledge.
§ 373. Mr. Locke lays down two ways of increasing our knowledge :

1st. "Clear and distinct ideas with settled names; and,

2d. "The finding of those which show their agreement or disagreement;" that is, the searching out of new ideas which result from the combination of those that are known.

Firel
In regard to the first of these ways, Mr. Locke says: "The first is to get and settle in our minds
determined ideas of those things, whereof we have general or specific names ; at least, of so things must be distinct. many of them as we would consider and improve our knowledge in, or reason about." * * * "For, it being evident, that our knowledge cannot exceed our ideas, as far as they are either imperfect, confused, or obscure, we cannot expect to have certain, perfect, or clear knowledge."
§374. Now, the ideas which make up our knowledge of mathematical science, fulfil ex80 in mathe matics. actly these requirements. They are all impressed on the mind by a fixed, definite, and certain language, and the mind embraces them as so many images or pictures, clear and distinct in their outlines, with names which suggest at once their characteristics and properties.
$\S 375$. In the second method of increasing

Second.

 our knowledge, pointed out by Mr. Locke, mathematical science offers the most ample and the surest means. The reasonings are all based on self-evident truths, and are conducted by means of the most striking relations between the known and the unknown. The things reasoned about, and the methods of reasoning, are so clearly apprehended, that the mind never hesitates or doubts. It comprehends, or it does not compre-hend, and the line which separates the known

Characteris tics of the teasoning.

Its advantages.

Demonstration certain.

Mathematics includes a certain system. from the unknown, is always well defined. These characteristics give to this system of reasoning a superiority over every other, arising, not from any difference in the logic, but from a difference in the things to which the logic is applied. Observation may deceive, experiment may fail, and experience prove treacherous, but demonstration never.
"If it be true, then, that mathematics include a perfect system of reasoning, whose premises are self-evident, and whose conclusions are irresistible, can there be any branch of science or knowledge better adapted to the improvement of the understanding? It is in this capacity,

An adjunct and instrument of reason; as a strong and natural adjunct and instrument of reason, that this science becomes the fit subject of education with all conditions of society, whatever may be their ultimate pursuits. Most sciences, as, indeed, most branches of knowledge, address themselves to some particular taste, or subsequent avocation ; but this, while it is before all, as a useful attainment, especially adapts itself to the cultivation and improvement of the and necessar) to all. thinking faculty, and is alike necessary to al. who would be governed by reason, or live for usefulness."*

[^26]$\S 376$. The following, among other considerations, may serve to point out and illustrate the value of mathematical studies, as a means of mathemutics mental improvement and development.

1. We readily conceive and clearly apprehend the things of which the science treats; they being things simple in themselves and readily presented to the mind by plain and familiar language. For example: the idea of number, of one or more, is among the first ideas implanted in the mind; and the child who counts his fingers or his marbles, understands the art of numbering them as perfectly as he can know any thing. So, likewise, when he learns the definition of a straight line, of a triangle, of a square, of a circle, or of a parallelogram, he conceives the sdea of each perfectly, and the name and the image are inseparably connected. These ideas, so distinct and satisfactory, are expressed in the simplest and fewest terms, and may, if necessary, be illustrated by the aid of sensible objects.
2. The words employed in the definitions second. are always used in the same sense-each ex- Wordsare always naed pressing at all times the same idea; so that in the same sense.

ConsiJera tions of the value of First. They give clear cuiscerp tions of things.

Example.

They estab lish clear relations between deffil tions and things. when a definition is apprehended, the conception of the thing, whose name is defined, is perfect in the mind.

There is, therefore, no doubt or ambiguity

Hence, it is certain.
either in the language, or in regard to what is affirmed or denied of the things spoken of; but all is certainty, both in the language employed and in the ideas which it expresses.

Thind. It employs no definition or axiom not evident and clear.

The conncetion evident. nected with a definition or axiom, or with some principle previously established.

Fourth. The order atrengthens difforent faoulties.

How ideas are presented.
3. The science of mathematics employs no definition which may not be clearly compre-hended-lays down no axioms not universally true, and to which the mind, by the very laws of its nature, readily assents; and because, also, in the process of the reasoning, no principle or truth is taken for granted, but every link in the chain of the argument is immediately con-
4. The order established in presentmg the subject to the mind, aids the memory at the same time that it strengthens and improves the reasoning powers. For example: first, there are the definitions of the names of the things which are the subjects of the reasoning; then the axinms, or self-evident truths, which, together with the definitions, form the basis of the science. From these the simplest propositions How the de- are deduced, and then follow others of greater ductions follow. difficulty; the whole connected together by rig orous logic-each part receiving strength and light from all the others. Whence, it follows, that any proposition may be traced to first prin.
ciples; its dependence upon and connection propositions with those principles made obvious; and its truth traced to with those principles made obvious; and its truth their sourcen established by certain and infallible argument.
5. The demonstrative argument of mathematics produces the most certain knowledge of which the mind is susceptible. It establishes truth so clearly, that none can doubt or deny. For, if the premises are certain-that is,

Fifth. Argument the must certain.

Reasona

 such that all minds admit their truth without hesitation or doubt, and if the method of drawing the conclusions be lawful-that is, in accordance with the infallible rules of logic, the inferences must also be true. Truths thus established may be relied on for their verity ; and the knowl- Such koowt edge thus gained may well be denominated ${ }^{\text {edge scienca }}$ Science.$\S 37 \%$. There are, as we have seen, in mathematics, two systems of investigation quite different from each other: the Synthetical and the Analytical; the synthetical beginning with the

Two sys tems:

Synthesis, Analysib. definitions and axioms, and terminating in the highest truth reached by Geometry.
"This science presents the very method by which the human mind, in its progress from childhood to age, develops its faculties. What first meets the observation of a child? Upon First notious what are his earliest investigations employed?

What is frrst Next to color, which exists only to the sight. observed. figure, extension, dimens'on, are the first objects which he meets, and the first which he examines. He ascertains and acknowledges their existence; then he perceives plurality, and begins to enurogress of merate ; finally he begins to draw conclusions inquiry. from the parts to the whole, and makes a law from the individual to the species. Thus, he has obtained figure, extension, dimension, enumeration, and generalization. This is the teaching of nature; and hence, when this process

Process developed in the system of Geometry.

First necesaity for Analysis: becomes embodied in a perfect system, as it is in Geometry, that system becomes the easiest and most natural means of strengthening the mind in its early progress through the fields of knowledge."
"Long after the child has thus begun to generalize and deduce laws, he notices objects and events, whose exterior relations afford no conclusion upon the subject of his contemplation. Machinery is in motion-effects are produced.

Its method. He is surprised; examines and inquires. He reasons backward from effect to cause. T.ìis is Analysis, the metaphysics of mathematics; and

WYhat the science is: through all its varieties-in Arithmetic-in Alge-bra-and in the Differential and Integral Calculus, it furnishes a grand armory of weapons for arcute philosophical investigation. But analysis
advances one step further by its peculiar nota- what itdoes tion; it exercises, in the highest degree, the faculty of abstraction, which, whether morally or intellectually considered, is always connected with the loftiest efforts of the mind. Thus this science comes in to assist the faculties in their progress to the ultimate stages of reasoning; and the more these analytical processes are cultivated, the more the mind looks in upon itself,

What it Anally aco complishos. estimates justly and directs rightly those vast powers which are to buoy it up in an eternity of future being."*
§ 378. To the quotations, which have already been so ample, we will add but two more.
"In the mathematics, I can report no deficience, except it be that men do not sufficiently understand the excellent use of the pure mathematics, in that they do remedy and cure many defects in the wit and faculties intellectual. For, if the wit be too dull, they sharpen it ; if too wandering, they fix it ; if too inherent in the sense, they abstract it." \dagger Again :
"Mathematics serve to inure and corroborate the mind to a constant diligence in study, to

How the stady of

[^27]mathematics affects the mind.
undergo the trouble of an attentive meditation, and cheerfully contend with such difficulties as lie in the way. They wholly deliver us from credulous simplicity, most strongly fortify us against the vanity of skepticism, effectually refis induences. strain us from a rash presumption, inost easily incline us to due assent, perfectly subjugate us to the government and weight of reason, ana inspire us with resolution to wrestle against the injurious tyranny of false prejudices.

How they are exerted.
"If the fancy be unstable and fluctuating, it is, as it were, poised by this ballast, and steadied by this anchor; if the wit be blunt, it is sharpened by this whetstone; if it be luxuriant, it is pruned by this knife ; if it be headstrong, it is restrained by this bridle ; and if it be dull, it is roused by this spur."*
$\S 379$. Mathematics, in all its branches, is, in fact, a science of ideas alone, unmixed with mat-

Mathematics a pure scieuce. ter or material things; and hence, is properly termed a Pure Science. It is, indeed, a fairy land of the pure ideal, through which the mind is conducted by conventional symbols, as thought is conveyed along wires constructed by the hand of man.
$\S 380$. In conclusion, therefore, we may claim what mav for the study of Mathematics, that it impresses fairly be the mind with clear and distinct ideas; culti- mathematice vates habits of close and accurate discrimination; gives, in an eminent degree, the power of abstraction ; sharpens and strengthens all the faculties, and develops, to their highest range, the reasoning powers. The tendency of this ytstendency. study is to raise the mind from the servile habit of imitation to the dignity of self-reliance and self-action. It arms it with the inherent energies of its own elastic nature, and urges it out The rewom on the great ocean of thought, to make new discoveries, and enlarge the boundaries of mental effort

CHAPTER II.

```
THE UTILITY OF MATHEMATICS REGARDED AS A MEANE OF ACQUIRING
KNOWLEDGE-BACONIAN PHILOSOPHY.
```

Msthematics: §381. In the preceding chapter, we considered the effects of mathematical studies on the mind, merely as a means of discipline and trainHow consid- ing. We regarded the study in a single point ered heretofore: of view, viz. as the drill-master of the intellectual faculties - the power best adapted to bring them all into order-to impart strength, and to give to them organization. In the How now present chapter we shall consider the study unconsidered. der a more enlarged aspect-as furnishing to man the keys of hidden and precious knowledge, and as opening to his mind the whole volume of nature.

Material §382. The material universe, which is spread Universe. out before us, is the first object of our rational
regards. Material things are the first with which we have to do. The child plays with his toys in the nursery, paddles in the limpid water, twirls his top, and strikes with the hammer. At a maturer age a higher class of ideas are embraced. The earth is surveyed, teeming with its products, and filled with life. Man looks around him with wondering and delighted eyes. The earth he stands upon appears to be made of firm soil and liquid waters. The land is broken into an irregular surface by abrupt hills and frowning mountains. The rivers pursue their courses through the valleys, without any apparent cause, and finally seem to lose themselves in their own expansion. He notes the return of day and night, at regular intervals, turns his eyes to the starry heavens, and inquires how far those sentinels of the night may be from the world they look down upon. He is yet to learn that all is governed by general laws imparted by the fiat of Him who created all things ; that matter, in all its forms, is subject to those laws; and that man possesses the capacity to investigate, develop, and understand them. It is of the essence of law that it includes all possible contingencies, and insures mplicit obedience; and such are the laws of nature.
\& 383. To the man of chance, nothing is more mysterious than the developments of science.
Uniformity: He does not see how so great a uniformity can variety: consist with the infinite variety which pervades every department of nature. While no two individuals of a species are exactly alike, the resemblance and conformity are so close, that the naturalist, from the examination of a single bone, finds no difficulty in determining the species, size, and structure of the animal. So,

They appear In all things. also, in the vegetable and mineral kingdoms: all the structures of growth or formation, a!though infinitely varied, are yet conformable to like general laws.

This wonderful mechanism, displayed in the structure of animals, was but imperfectly understood, until touched by the magic wand of science. Then, a general law was found to pervade the whole. Every bone is of that length What science and diameter best adapted to its use; every shows. muscle is inserted at the right point, and works about the right centre; the feathers of every bird are shaped in the right form, and the curves in which they cleave the air are best adapted

What may bo demonstrated. to velocity. It is demonstrable, that in every case, and in all the variety of forms in which forces are applied, either to increase power or gain velocity, the very best means have been
adopted to produce the desired result. And why why it is sa should it not be so, since they are employed by the all-wise Architect?
$\S 384$. It is in the investigations of the laws Applications of nature that mathematics finds its widest Mathematice range and its most striking applications.

Fxperience, aided by observation and enlight-
ened by experiment, is the recognised fountain

Bacon's Philosophy. of all knowledge of nature. On this foundation Bacon rested his Philosophy. He saw that the Deductive process of Aristotle, in which the conclusions do not reach beyond the premises, Aristotes: was not progressive. It might, indeed, improve the reasoning powers, cultivate habits of nice discrimination, and give great proficiency in verbal dialectics; but the basis was too narrow for that expansive philosophy, which was to xts defecte. unfold and harmonize all the laws of nature. Hence, he suggested a careful examination of what Bacon nature in every department, and laid the foundations of a new philosophy. Nature was to be interrogated by experiment, observation was to note the results, and gather the facts into the storehouse of knowledge. Facts, so obtained, The means tc were subjected to analysis and collation, and beconpluyer general laws inferred from such classification by

Bacnn's system Inductive.
a reasoning process called Induction. Hence, the system of Bacon is said to be Inductive.

New Philosophy: impulse to the human mind. Its subject was Nature-material and immaterial; its object, the discovery and analysis of those general laws
What it did. which pervade, regulate, and impart uniformity to all things ; its processes, experience, experiment, and observation for the ascertainment of tis nature. facts ; analysis and comparison for their classification; and reasoning, for the establishment of

What aided it. general laws. But the work would have been incomplete without the aid of deductive science. General laws deduced from many separate cases,

What it needed. by Induction, needed additional proof; for, they might have been inferred from resemblances too slight, or coincidences too few. Mathematical science affords such proofs.

The truths of § 386. Regarding general laws, established by Induction: Induction, as fundamental truths, expressing these by means of the analytical formulas, and then operating on these formulas by the known pro-
How verifed cesses of mathematical sclence, we are enabled, by Analysis. not only to verify the truths of induction, but often to establish new truths, which were hidden from experiment and observation. As the in-
ductive process may involve error, while the deductive cannot, there are weighty scientific reasons, for giving to every science as much of the character of a Deductive Science as possible. Every science, therefore, should be constructed with the fewest and simplest possible inductions. These should be made the basis of deductive processes, by which every truth, however complex, should be proved, even if we chose to verify the same by induction, based on specific experiments.
$\$ 38 \%$. Every branch of Natural Philosophy was originally experimental; each generalization rested on a special induction, and was derived from its own distinct set of observations and experiments. From being sciences of pure experiment, as the phrase is, or, to speak more correctly, sciences in which the reasonings consist of no more than one step, and that a step of induction; all these sciences have become, to some extent, and some of them in nearly their whole extent, sciences of pure reasoning: thus, multitudes of truths, already known by induction, from as many different sets of experiments, have come to be exhibited as deductions, or corollaries from inductive propositions of a simpler and more universal character. Thus, mechan-

Deductive Sciences:
ics, hydrostatics, optics, and acoustics, have successively been rendered mathematical ; and astronomy was brought by Newton within the laws of general mechanics.
Their advan- The substitution of this circuitous mode of tages: proceeding for a process apparently much easier and more natural, is held, and justly too, to be the greatest triumph in the investigation of nature.

They rest on Inductions. this progressive transformation, all sciences tend to become more and more deductive, they are not, therefore, the less inductive ; for, every step in the deduction rests upon an antecedent in-

Sciences deductive or ex. perimental. duction. The opposition is, perhaps, not so much between the terms Deductive and Inductive as between Deductive and Experimental.

Experimen tal Science

When de ductive.
§ 388. A science is experimental, in proportion as every new case, which presents any peculiar features, stands in need of a new set of observations and experiments, and a fresh induction. It is deductive, in proportion as it can draw conclusions, respecting cases of a new kind, by processes which bring these cases under old inductions, or show them to possess known marks of certain attributes.
§ 389. We can now, therefore, perceive, what
is the generic distinction between sciences that can be made deductive and those which must, as yet, remain experimental. The difference Experimentu consists in our having been able, or not yet able, to draw from first inductions as from a general law, a series of connected and depend ent truths. When this can be done, the de ductive process can be applied, and the science becomes deductive. For example: when Dednctive Newton, by observing and comparing the mo tions of several of the heavenly bodies, discov ered that all the motions, whether regular os apparently anomalous, of all the observed bodies of the Solar System, conformed to the law of moving around a common centre, urged by a centripetal force, varying directly as the mass, and inversely as the square of the distance from the centre, he inferred the existence of such a law for all the bodies of the system, and then demonstrated, by the aid of mathematics, that no wher law could produce the motions. This is the greatest example which has yet occurred of Lhe transformation, at one stroke, of a science which was in a great degree purely experimental, into a deductive science.
\S 390. How far the study of mathematics pre- study of pares the mind for such contemplations and mathematica
prepares the such knowledge, is well set forth by an old wrimind. ter, himself a distinguished mathematician. He says :
Dr. Barrow's "The steps are guided by no lamp more clearopinion. ly through the dark mazes of nature, by no thread more surely through the infinite turnings of the labyrinth of philosophy; nor lastly, is the bottom of truth sounded more happily by any other line.
How I will not mention with how plentiful a stock
mathematics furnish the unind. of knowledge the mind is furnished from these ; with what wholesome food it is nourished, and what sincere pleasure it enjoys. But if I speak further, I shall neither be the only person nol the first, who affirms it, that while the mind is

Abstract and elevate it: abstracted, and elevated from sensible matter, distinctly views pure forms, conceives the beauty of ideas, and investigates the harmony of proportions, the manners themselves are sensibly corrected and improved, the affections composed and rectified, the fancy calmed and settled, and the understanding raised and excited to more Confrred by divine contemplations: all of which I might dephilosophers fend by the authority and confirm by the suffrages of the greatest philosophers."*
§ 391. Sir John Herschel, in his Introduction

* Dr. Barrow.

CHAP. H.] ASTRON MY WITHOUT MATHEMATICS. 373
to his admirable Treatise on Astronomy, very opiniou. justly remarks, that,
"Admission to its sanctuary [the science of MathenatAstronomy], and to the privileges and feelings indippenssof a votary, is only to be gained by one means ble wn sound and sufficient knowledge of mathematics, Astronony. the great instrument of all exact inquiry, without which no man can ever make such advances in this or any other of the higher departments of science as can entitle him to form an independent opinion on any subject of discussion within their range.
"It is not without an effort that those who possess this knowledge can communicate on such subjects with those who do not, and adapt their language and their illustrations to the ne-

Informa tion caunot be given to such ss have mu mathematics:

Except by very cump brous methods. to be made, not to the pure and abstract reason, but to the sense of analogy-to practice and experience: principles and modes of action have to be established, not by direct argument from acknowledged axioms, but by continually referring to the sources from which the axioms thern-

Must begin with the simplest elements:
selves have been drawn, viz. examples; that is to say, by bringing forward and dwelling on simple and familiar instances in which the same principles and the same or similar modes of action take place; thus erecting, as it were, in each particular case, a separate induction, and constructing at each step a little body of science to

Illustration of the difference between instruction by ecientific and unscientific methods.

Mathematics pecessary to physics: meet its exigencies. The difference is that of pioneering a road through an untraversed country, and advancing at ease along a broad and beaten highway; that is to say, if we are determined to make ourselves distinctly understood, and will appeal to reason at all." Again:
"A certain moderate degree of acquaintance with abstract science is highly desirable to every one who would make any considerable progress in physics. As the universe exists in time and place ; and as motion, velocity, quantity, number, and order, are main elements of our knowledge of external things and their changes, an acquaintance with these, abstractedly considwhy it is so ered (that is to say, independent of any considnecrssary. eration of particular things moved, measured, counted, or arranged), must evidently be a useful preparation for the more complex study of nature."*

[^28]§ 392. If we consider the department of chen- Nicosears io 1stry,-which analyzes matter, examines the elements of which it is composed, develops the laws which unite these elements, and also the agencies which will separate and reunite them,-we shall find that no intelligent and philosophical analysis can be made without the aid of mathematics.
§393. The mechanism of the physical universe, and the laws which govern and regulate its motions, were long unknown. As late as the 17 th century, Galileo was imprisoned for promulgating the theory that the earth revolves on its axis; and to escape the fury of persecution, renounced the deductions of science. Now, erery student of a college, and every ambitious boy of the academy, may, by the aid of his Algebra and Geometry, demonstrate the existence and nperation of those general laws which enable him to trace with certainty the path and motions of every body which circles the heavens.
§39t. What knowledge is more precious, or more elevating to the mind, than that which assures us that the solar system, of which the sun is the centre, and our earth one of the smaller bodies, is governed by the general law of gravitation; that is, that each body is retained in its orbit by attracting, and being at-

Laws long unknown.

Galileo.

By what means demonstrated.

Value

 knowledge:> What it teaches
tracted by, all the others? This power of attrac. tior: by which matter operates on matter, is the great governing principle of the material world. The motion of each body in the heavens de-

The things not easy.

Analysis: pends on the forces of attraction of all the others ; hence, to estimate such forces-varying as they do with the quantity of matter in each body, and inversely as the squares of their distances apart-is no easy problem ; yet analysis has solved it, and with such certainty, that the exact spot in the heavens may be marked at which each body will appear at the expiration What it has of any definite period of time. Indeed, a teledone: scope may be so arranged, that at the end of

How a result might be verified by experiment. that time either one of the heavenly bodies would present itself to the field of view; and if the instrument could remain fixed, though the time were a thousand years, the precise moment would discover the planet to the eye of the observer, and thus attest the certainty of science.
§ 395. But analysis has done yet more. It has not only measured the attractive power of

Analysis letermines halancing forces. each of the heavenly bodies; determined their distances from a common point and from each other; ascertained their specific gravities and traced their orbits through the heavens; but has also discovered the existence of balancing
and conservative forces, evincing the highest Evidence u
evidence of contrivance and design.
design.
§396. A superficial view of the architecture of the heavens might inspire a doubt of the staof the hear. ens shows permaniency of the bodies on each other produces what is called an irregularity in their motions. The earth, for example, in her annual course around the sun, is affected by the attraction of the moon and of all the planets which compose the solar system; and these attracting forces appear to give an irregularity to her motions. The moon in her revolutions around the earth is also orthemown. influenced by the attraction of the sun, the earth, and of all the other planets, and yields to each a motion exactly proportionate to the force exerted; and the same is equally true of all the bodies of the othes which belong to the system. It was reserved for analysis to demonstrate that every supposed irregularity of motion is but the consequence of a general law ; that every change is constancy, and every diversity uniformity. - Thus, mathe- Mathemation matical science assures us that our system has not been abandoned to blind chance, but that proves the permanency of the system. a superintending Providence is ever exerted through those general laws, which are so minute as to govern the motions of the feather as it is

Genernility of wafted along on the passing breeze, and yet so laws. omnipotent as to preserve the stability of worlds.
§ 39\%. But analysis goes yet another step. That class of wandering bodies, known to us by
comets: the name of comets, although apparently escaped from their own spheres, and straying heedlessly

What mathematics proves in regard to them. through illimitable space, have yet been pursued by the telescope of the observer until sufficient data have been obtained to apply the process of analysis. This done, a few lines written upon paper indicate the precise times of their reap-
Results stri pearance. These results, when first obtained, king. were so striking, and apparently so far beyond the reach of science itself, as almost to need Verification. the verification of experience. At the appointed times, however, the comets reappear, and science is thus verified by observation.

Nature cannot be investigated without mathematics.
§ 398. The great temple of nature is only to be opened by the keys of mathematical science. We may perhaps reach the vestibule, and gaze with wonder on its gorgeous exterior and its exact proportions, but we cannot open the por-
mustration. tal and explore the apartments unless we use the appointed means. Those means are the exact sciences, which can only be acquired by discipline and severe mental labor.

The precious metals are not scattered pro- science: fusely over the surface of the earth; they are, for wise purposes, buried in its bosom, and can be disinterred only by toil and labor. So with science : it comes not by inspiration; it is not borne to us on the wings of the wind; it can neither be extorted by power, nor purchased by wealth; but is the sure reward of diligent and assiduous labor. Is it worth that labor? What is it not worth? It has perforated the earth, and she has yielded up her treasures; it has guided in safety the bark of commerce over distant oceans, and brought to civilized man the treasures and choicest products of the remotest climes. It has scaled the heavens, and searched out the hidden laws which regulate and govern the material universe ; it has travelled from planet to planet, measuring their magnitudes, surveying their surfaces, determining their days and nights, and the lengths of their seasons. It has also pushed its inquiries into regions of space, where it was supposed that the mind of the Omnipotent never yet had energized, and there located unknown worlds-calculating their diameters, and their times of revolution.
§399. Mathematical science is a magnetic telegraph, which conducts the mind from orb

What It has done to make us acquainterd with the uni verse.

Ouly to be
acquired by study :

It is worth study.

What it has done for the want of man:

How mathematic
aid the mind in its inquiries:

How they enlarge it:

Mlay be relied on.

Mind delights in certainty.
to orb through the entire regions of measured space. It enables us to weigh, in the balance of universal gravitation, the most distant plane! of the heavens, to measure its diameter, to determine its times of revolution about a commor centre and about its own axis, and to claim s as a part of our own system.
In these far reachings of the mind, the im agination has full scope for its highest exerciso It is not led astray by the false ideal and fed by illusive visions, which sometimes tempt reason from her throne, but is ever guided by the deductions of science; and its ideal and the real are united by the fixed laws of eternal truth.
§ 400. There is that within us which dolights in certainty. The mists of doubt obscure the mental, as the mists of the morning do the physical vision. We love to look at nature through a medium perfectly transparent, and to see every object in its exact proportions. The science of

Why mathematics afford it. mathematics is that medium through which the mind may view, and thence understand all the parts of the physical universe. It makes manifest all its laws, discovers its wonderful harmonies, and displays the wisdom and omnipotence of the Creator.

CHAPTERIII.

THE UTILITY OF MATHEMATICS CONSIDERED AS FURNISHING THOSF RULES Of ART WHICH MAKE KNOWLEDGB PRACTICALLY EFFFCTIPE
§ 401. There is perhaps no word-in the Eng- Practical: lish language less understood than Practical. Litue By many it is regarded as opposed to theoreti- underswod cal. It has become a pert question of our day, its populum "Whether such a branch of knowledge is prac signication
tical ?" "If any practical good arises from pursuing such a study?" "If it be not full time

Questions relating to that old tomes be permitted to remain untouched bookin in the alcoves of the library, and the minds of the young fed with the more stimulating food of modern progress?"
§ 402. Such inquiries are not to be answered by a taunt. They must be met as grave questions, and considered and discussed with calmness. They have possession of the public mind; they affect the foundations of education; they

Inquirnes
How to be consildired

Thelr influenca

Their influence and direct the first steps ; they control importance. the very elements from which must spring the systems of public instruction.

Practical:
Common qcceptation:
, implies
What it
§ 403. The term "practical," in its common acceptation, that is, in the sense in which it is often used, refers to the acquisition of useful knowledge by a short process. It implies a substitution of natural sagacity and " mother wit" for the results of hard study and laborious effort. It implies the use of knowledge before its acquisition; the substitution of the results of mere experiment for the deductions of science, and the placing of empiricism above philosophy.

In this sense, it is opposed to progress:
§ 404. In this view, the practical is adverse to sound learning, and directly opposed to real progress. If adopted, as a basis of national education, it would shackle the mind with the iron fetters of mere routine, and chain it down to the drudgery of unimproving labor. Under such a system, the people would become imita-

Consequences. tors and rule-men. Great and original principles would be lost sight of, and the spirit of investigation and inquiry would find no field for their legitimate exercise.

Right signification.

But give to "practical" its true and right signification, and it becomes a word oi the
choicest import. In its right sense, it is the best means of making the true ideal the actual; that is, the best means of carrying into the business and practical affairs of life the conceptions and deductions of science. All that is truly great in the practical, is but the actual of an antecedent ideal.
§ 405. It is under this view that we now propose to consider the practical advantages of mathematical science. In the two preceding chapters we have pointed out its value as a means of mental development, and as affording facilities for the acquisition of knowledge. We shall now show how intimately it is blended with the every-day affairs of life, and point out some of the agencies which it exerts in giving practical development to the conceptions of the mind.
§406. We begin with Arithmetic, as this branch of mathematics enters more or less into all the others. And what shall we say of its practical utility? It is at once an evidence and erement of civilization. By its aid the child in the nursery numbers his toys, the housewife keeps her daily accounts, and the merchant sums up his daily business. The ten little characters,

Best means of applying koowledge.

Mathematical science: lts practical value.

Arithmetic considered practicaliy
which we call figures, thus perform a very imWhat \&igures portant part in human affairs. They are sleepless
do. sentinels watching over all the transactions of trade and commerce, and making known their final results. They superintend the entire busirheir value. ness affairs of the world. Their daily records exhibit the results on the stock exchange, and of enterprises reaching over distant seas. The Used by the mechanic and artisan express the final results of mechanic: all their calculations in figures. The dimensions In building. of buildings, their length, breadth, and height, as well as the proportions of their several parts, are all expressed by figures before the foundation aidscience. stones are laid; and indeed, all the results of science are reduced to figures before they can be made available in practice.
$\S 40 \%$. The rules and practice of all the mechanic arts are but applications of mathematical

Mathematics asod al n the mechanic arts. science. The mason computes the quantity of his materials by the principles of Geometry and the rules of Arithmetic. The carpenter frames his building, and adjusts all its parts, each to the others, by the rules of practical Geometry.
Fxamples The millwright compuies the pressure of the water, and adjusts the driving to the driven wheel, by rules evolved from the formulas of analysis.
§ 40s. Workshops and factories afford marked illustrations of the utility and value of practical science. Here the most difficult problems are resolved, and the power of mind over matter exhibited in the most striking light. To the uninstructed eye of a casual observer, confusion appears to reign triumphant. But all the parts of that complicated machinery are adjusted to each other, and were indeed so arranged, and according to a general plan, before a single wheel was formed by the hand of the forger. The power necessary to do the entire work was first carefully calculated, and then distributed throughout the ramifications of the machinery. Each part was so arranged as to fulfil its office. Every circumference, and band, and cog, has its specific duty assigned it. The parts are made at different places, after patterns formed by the rules of science, and when brought together, fit exactly. They are but formed parts of an entire whole, over which, at the source of power, an ingenious contrivance, called the Governor, presides. His function is to regulate the force which shall drive the whole according to a uniform speed. He is so intelligent, and of such delicate sensibility, that on the slightest Its functioms increase of velocity, he diminishes the force, and adds additional power the moment the speed

All is but slackens. All this is the result of mathematical the result of science calculation. When the curious shall visit these exhibitions of ingenuity and skill, let them not suppose that they are the results of chance and experiment. They are the embodiments, by intelligent labor, of the most difficult investigations of mathematical science.
§ 409. Another striking example of the applcation of the principles of science is found in sieamship: the steamship.

In the first place, the formation of her hull, How the hull so as to divide the waters with the least resistis formed. ance, and at the same time receive from them the greatest pressure as they close behind her, Hermasts: is not an easy problem. Her masts are all

How aljusted. to be set at the proper angle, and her sails so adjusted as to gain a maximum force. But the complication of her machinery, unless seen through the medium of science, baffles investigation, and exhibits a startling miracle. The burning furnace, the immense boilers, the massMachiners: ive cylinders, the huge levers, the pipes, the lifting and closing valves, and all the nicelyadjusted apparatus, appear too intricate to be comprehended by the mind at a single glance.

The whole constructed Yet in all this complication-in all this variety of principle and workmanship, science has ex-
erted its power. There is not a cylinder, whose dimensions were not measured-not a lever, of the primince: whose power was not calculated-nor a valve, which does not open and shut at the appointed moment. There is not, in all this structure, a bolt, or screw, or rod, which was not provided for before the great shaft was forged, and which does not bear to that shaft its proper proportion. And when the workmanship is put to the test, and the power of steam is urging the vessel on her distant voyage, science alone can direct her way.

In the captain's cabin are carefully laid away, for daily use, maps and charts of the port which he leaves, of the ocean he traverses, and of the coasts and harbors to which he directs his way. On these are marked the results of much scientific labor. The shoals, the channels, the points of danger and the places of security, are all indicated. Near by, hangs the barometer, constructed from the most abstruse mathematical formulas, to indicate changes in the weight of the atmosphere, and admonish him of the approaching tempest. On his table lie the sextant, and the tables of Bowditch. These enable him, by observations on the heavenly bodies, to mark his exact place on the chart, and learn his position on the surface of the earth. Thus, practical

From a general plan.

By what means navigated.

Thelr contents and uses.

Barometer:

Sextant

Science guides the ship:
science, which shaped the keel of the ship to its proper form, and guided the hand of the mechanic in every workshop, is, under Providence, the means of conducting her in safety over the ocean. It is, indeed, the cloud by day and the
What thus accomplishes.

Illustration.

Capt. Hall's voyage.

Its leugth:
and lucidents. pillar of fire by night. Guiding the bark of commerce over trackless waters, it brings distant lands into proximity, and into political and social relations.
"We have before us an anecdote communicated to us by a naval officer,* distinguished for the extent and variety of his attainments, which shows how impressive such results may become in practice. He sailed from San Blas, on the west coast of Mexico, and after a voyage of eight thousand miles, occupying eighty-nine days, arrived off Rio de Janeiro; having in this interval passed through the Pacific Ocean, rounded Cape Horn, and crossed the South Atlantic, without making any land, or even seeing a single sail, with the exception of an American whaler off Cape Horn. Arrived within a week's sail of Rio, he set seriously about determining, by

[^29]* Captain Basil Hall.
from five to ten miles, ran the rest of the way Remarkablo by those more ready and compendious methods, known to navigators, which can be safely employed for short trips between one known point and another, but which cannot be trusted in long voyages, where the moon is the only sure guide.
"The rest of the tale, we are enabled, by his kindness, to state in his own words: ‘ We steered towards Rio de Janeiro for some days after taking the lunars above described, and having arrived within fifteen or twenty miles of the coast, I hove-to at four in the morning, till the day should break, and then bore up: for although it was very hazy, we could see before us a couple of miles or so. About eight o'clock it became so foggy, that I did not like to stand in further, and was just bringing the ship to the wind again, before sending the people to breakfast, when it suddenly cleared off, and I had the satisfaction of seeing the great Sugar-Loaf Rock, which stands on one side of the harbor's mouth, so nearly right ahead that we had not to alter our course above a point in order to hit the entrance of Rio. This was the first land we had seen for three months, after crossing so many seas, and being set backwards and forwards by innumerable currents and foul winds.' The effect on all on board
three months.
iscuvery of Harbor.

Effect might well be conceived to have been electric:
on the crew. and it is needless to remark how essentially the authority of a commanding officer over his crew may be strengthened by the occurrence of such incidents, indicative of a degree of knowledge and consequent power beyond their reach."*

Surveying.

Measure-

 ment of land.§410. A useful application of mathematical science is found in the laying out and measurement of land. The necessity of such measurement, and of dividing the surface of the earth into portions, gave rise to the science of GeomOwnership: etry. The ownership of land could not be de-

How termined without some means of running boun determined. dary lines, and ascertaining limits. Levelling is also connected with this branch of practical mathematics.
By the aid of these two branches of practical science, we measure and determine the area or contents of contents of ground; make maps of its surface ; ground. measure the heights of hills and mountains;
Rivers. find the directions of rivers; measure their volumes, and ascertain the rapidity of their currents. So certain and exact are the results, that entire countries are divided into tracts of convenient size, and the rights of ownership fully Certanty secured. The rules for mapping, and the con-

[^30]ventional methods of representing the surface Ma; of ground, the courses of rivers, and the heights of mountains, are so well defined, that the natural features of a country may be all indicated on paper. Thus, the topographical features of all the known parts of the earth may be correctly and vividly impressed on the mind, by a sentation. nap, drawn according to the rules of art, by the human hand.
§411. Our own age has been marked by a Railsays striking application of science, in the construction of railways. Let us contemplate for a mo- The problem ment the elements of the problem which is presented in the enterprise of constructing a railroad between two given points.

In the first place, the route must be carefully examined to ascertain its general practicability. The surveyor, with his instruments, then ascerpresented. tains all the levels and grades. The engineer examines these results to determine whether the power of steam, in connection with the best combination of machinery, will enable him to overcome the elevations and doscend the declivities in safety. He then calculates the curves calculations of the road, the excavations and fillings, the cost of the bridges and the tunnels, if there are any; and then adjusts the steam-power to meet

Completion and use.

The striking fact.

The whole the result of science.
the conditions. In a few months after the enterprise is undertaken, the locomotive, with its long train of passenger and freight cars, rushes over the tract with a superhuman power, and fulfils the office of uniting distant places in commercial and social relations.

But that which is most striking in all this, is the fact, that before a stump is grubbed, or a spade put into the ground, the entire plan of the work, having been subjected to careful analysis, is fully developed in all its parts. The construction is but the actual of that perfect ideal which the mind forms within itself, and which can spring only from the far-reaching and immutable principles of abstract science.
§ 412. Among the nost useful applications of practical science, in the present century, is the

Croton aqueduct. introduction of the Croton water into the city of New York.

In the Highlands of the Hudson, about fifty miles from the city, the gushing springs of the

Sources of the river.

Priselpal reservuir. mountains indicate the sources of the Croton river, which enters the Hudson a few miles below Peekskill. At a short distance from the mouth, a dam fifty-five feet in height is thrown across the river, creating an artificial lake for the permanent supply of water. The area of this
lake is equal to about four hundred acres. The aqueduct commences at the Croton dam, on a Aqueduct line forty feet above the level of the Hudson river, and runs, as near as the nature of the ground will permit, along the east bank, till it reaches its final destination in the reservoirs of the city. There are on the line sixteen tun- Its tumets nels, varying in length from 160 to 1,263 feet, inaking an aggregate length of 6,841 feet. The heights of the ridges above the grade level of the tunnels range from 25 to 75 feet. Twenty-five streams are crossed by the aqueduct in Westchester county, varying from 12 to 70 feet below the grade line, and from 25 to 83 feet toow the top covering of the aqueduct. The Harlem Iarlem rivez river is passed at an elevation of 120 feet above the surface of the water. The average dimensions of the interior of the aqueduct, are about seven feet in width and eight feet in height.

The width of the Harlem river, at the point where the aqueduct crosses it, is six hundred and twenty feet, and the general plan of the bridge is as follows: There are eight arches, each of 80 feet span, and seven smaller arches, each of 50 feet span, the whole resting on piers and abutments. The length of the bridge is 1,450 feet. The height of the river piers from tine lowest foundation is 96 feet. The arches

Their heights.

Streams crossed.

Its width.
ts lengte .
yts height: are semi-circular, and the height from the lowest foundation of the piers to the top of the uts widh. parapet is 149 feet. The width across, on the top, is 21 feet.

To afford a constant supply of water for distribution in the city two large reservoirs have

Receiving Reservoir:
its extent. to thirty-one acres. It is divided into two parts by a wall running east and west. The depth of

Depth of water.

Distributing Reservoir: been constructed, called the receiving reservoir and the distributing reservoir. The surface of the receiving reservoir, at the water-line, is equal water in the northern part is twenty feet, and in the southern part thirty feet.

The distributing reservoir is located on the highest ground which adjoins the city, known as Murray Hill. The capacity of this reservoir is equal to $20,000,000$ of gallons, which is about one-seventh that of the receiving reservoir, and the depth of water is thirty-six feet.

The full power of science has not yet been illustrated. A perfect plan of this majestic structure was arranged, or should have been, before a stone was shaped, or a pickaxe put into the ground. The complete conception, by a single mind, of its general plan and minutest details, was necessary to its successful prosecution. It was within the range and power of science to have given the form and dimensions
of every stone, so that each could have been shaped at the quarry. The paris are so connected by the laws of the geometrical forms,

Cinnure tions of the parla. that the dimensions and shape of each stone was exactly determined by the nature of that portion of the structure to which it belonged.
§ 413. We have presented this outline of the Croton aqueduct mainly for the purpose of illustrating the power and celebrating the triumphs of mathematical science. High intellect, it is true, can alone use the means in a work so complicated, and embracing so great a variety of intricate details. But genius, even of the highest order, could not accomplish, without continued trial and laborious experiment, such an undertaking, unless strengthened and guided 'oy the immutable truths of mathematical science.
§ 414. The examination of this work cannot but fill the mind with a proud consciousness of

What science has done. the power and skill of man. The struggling brooks of the mountains are collected together-accumulated-conducted for forty miles through a subterranean channel, to form small lakes in the vicinity of a populous city.

From these sources, by an unseen process, the

Jittie as: complistions wlthaus sciptuce.

Crotern aquerluct: Why siven
pure water is carried to every dwelling in the large metropolis. The turning of a faucet de-

Conse quences which have roilowea. livers it from a spring at the distance of fifty miles, as pure as when it gushes from its granite hills. That unseen power of pressure, which resides in the fluid as an organic law, exerts its force with unceasing and untiring energy. To minds enlightened by science, and skill directed by its rules, we are indebted for one of the noblest works of the present century. May we
Conclusion. not, therefore, conclude that science is the only sure means of giving practical development to those great conceptions which confer lasting benefits on mankind? "All that is truly great in the practical, is but the result of an antecedent ideal."

I N D E X.

Apothecaries' Weight-Its units and scale, Section 145.
Appremension .Simple apprehension is the notion (or conception) of an object in the mind, 7.
" Incomplex apprehension is of one object or of several without any relation being perceived between them, 7.
" Complex is of several with such a relation, 7.
Area or........Contents, Number of times a surface contains its unit of measure, 148.
Argument with one premise suppressed is called an Enthymeme, 47.
" Two kinds of objections, 47.
" Every valid, may be reduced to a syllogism, 52.
" at full length, a syllogism, 56.
" concerned with connection between premises and con. clusion, 57.
" Where the fault (if any) lies, 69.
Arguments, In reasoning we make use of, 42.
"
"
Aristotle
"
"
Aristotle's Dictum-Whatever is predicated (that is, affirmed or denied) universally, of any class of things, may be predicated, in like manner (viz. affirmed or denied), of any thing comprehended in that class, 54.
"
" Keystone of his logical system, 54.
6
" Objections to, 54, 55.
" " a generalized statement of all demonstration, 55.
"
" applied to terms represented by letters, 56.
"
" not complied with, $59,60$.
" All sound arguments can be reduce i to the form to which it applies, $65,60$.
Arithmetic Is both a science and an art, 180.
" It is a science in all that relates to the properties, laws, and proportions of numbers, 180.
ARITHMETICIt is an art in all that concerns their application, Sec-
tion 181.
Processes of, not affected by the nature of the ob-
jects, 43.

Astronomy, Authors, 64	Mathematics necessary in, Section 391. methods of finding ratio, 173, 1 ;8. " of placing Rule of Three, 195. quotations from, on Arithmetic, 205, 208. definition of proportion, 272.
Auxiliary	Quantities, 263, 264.
Avoirdupois	Weight, its units and scale, 143.
Axiom.	. A self-evident truth, 27, 100.
Axioms	of Geometry, process of learning them, 27.
"	or canons, for testing the validity of syllogisms, 67.
	of Geometry established by Induction, 73.
	for forming numbers, 78.
	for comparison relate to equality and inequality, 109.
	for inferring equality, 109, 262, 264, 268.
	" " inequality, 109.
*	employed in solving equations, $282,315$.
Bacon, Lord,	Quotation from, 378.
	Foundation of his Philosophy, 384; its subject Nature, 385.
.	His system inductive, 384.
"	Object and means of his philosophy, 385.
Barometer,	Construction and use of, 409.
Barrow, Dr.,	Quotation from, 378, 390.
Belief	essential to knowledge, 23.
"	and disbelief are expressed in propositions, 36.
Blakewell,	steps of his discovery, 32.
Bowditch,	Tables of, used in Navigation, 409.
Breadtit.	. A dimension of space, 81.
Bridge,	Harlem, description of, 412.
Calculus,	. In its general sense, means any operation performea on algebraic quantities, 285, 286.
"	Differential and Integral, 287, 288, 289.
Canons	for testing the validity of syllogisms, 67.
Cause	and effect, their relation the scientific basis of induc. tion, 33.
Chemist,	Illustration, 53 ; idea of iron, 372.
Chemistry	aided by Mathematics, 392.
Circle A portion of a plane included within a curve, all the

points of which are equally distant from a certain point within called the centre, Section 248.
Circle The only curve of Elementary Geometry, 248.
" Property of, 260.
Circular Measure, its units and scale, 156.
Classes Divisions of species or subspecies, in which the characteristic is less extensive, but more full and com. plete, 16.
Classification. The arrangement of objects into classes, with reference to some common and distinguishing characteristic, 16.
48
Coefficient
Coins
Basis of, may be chosen arbitrarily, 20.

$"$
Coins
Combinations

of a letter, 295 ; of a product, 296.
Differential, 287, 288.
should be exhibited to give ideas of numbers, 140.
Combinations in Arithmetic, 196-203.
taught in First Arithmetic, 220-222.
Comets, Problem with reference to, 397.
Comparison, Knowledge gained by, 106.
"

Reasoning carried on by, $25,311$.
ConclusiosThe third proposition of a syllogism, 40.
" in Induction, broader than the premises, 31.
" deduced from the premises, 40, 41, 46, 47, 49.
" contradicts a known truth, in negative demonstra tions, 268, 269.
Concrete Quantity, 107.
Conjunctions causal, illative, 48.
"
denote cause and effect, premise and conclusion, 48.
Consecutive . . . Consecutive values, 326 .
ConstantsQuantities which preserve a fixed value throughout the same discussion or investigation, 286, 287, 317.
" represented by the first letters of the alphabet, 288.
Continuity Continuity defined, $321,325$.
" Consequences of the law of continuity, 328.
CopulaThat part of a proposition which indicates the act of judgment, 38.
"
must be " is" or "is not," 38,39 .
Cousin,
quotation from, 168.
Curves,
Croton
"
circumference of circle the simplest of, 243.
river, its sources, 412.
dam, its construction, 412 ; lake, area of, 412

Croton	aqueduct, description of, Section 412.
Decimals,	
Dedoction A process of reasoning by which a particular truth	
is inferred from other truths which are known or	
admitted, 34.	

Distribution... A term is distributed, when it stands for all its signicates, Section 61.
" A term is not distributed when it stands for only a part of its significates, 61.
Distribution, Words which mark, not always expressed, 62.
Division, Readings in, 130; examples in, 162.
" Combinations in, 200.
" All operations in, governed by one principle, 236.
" of quantities, how indicated, 298.
Dry Measure, Its units and scale, 154.
Duodecimal Units, 149-151.

English Money, Its units and scale, 142.
Enthymeme.... An argument with one premise suppressed, 47.
EqualTwo geometrical figures are said to be equal when they contain the same unit an equal number of times; and equal in all their parts, when they can be so applied to each other as to coincide throughout their whole extent, 259.
EqualityExpresses the relation between two quantities, when each contains the same unit an equal number of times, 259, 316.
Equation An analytical formula for expressing equality, 311316.
" A proposition expressed algebraically, in which equal. ity is predicated of one quantity as compared with another, 313.
"
Equations, "
either abstract or concrete, 314 .
Examples

Experiment, In what sense used, 25 (Note).
Exponent...... An expression to show how many equal factors are employed, 297.
Extremes. \quad Subject and predicate of a proposition, 38, 67.

Fact Any thing which has been or is, 24.
*
Knowledge of, how derived, $2 \overline{5}$.
"
In what sense used, 25.

Factregarded as a genus, Section 25.
Factories, Value of science in, 40 s.
Fallacy.... ...Any unsound mode of arguing which appears to demand our conviction, and to be decisive of the question in hand, when in fairness it is not, 68.
Illustration of, 53.
Example and analysis of, 59, 60.
Material and Logical, 60.
Rules for detecting, $\% 0$.
Figure..........A portion of space limited by boundaries, 82.
" Each geometrical, stands for a class, 281.
Figures...........In Arithmetic show how many times a unit is taken, 132.
" do not indicate the kind of unit, 132.
" Laws of the places of, 133, 134.
" have no value, 135, 205.
" Methods of reading, 137; of writing, 203.
" Definitions of, 205, 206.
" should be early used in Arithmetic, 223.
First Arithmetic, what should be taught in it, 230.
" Faculties to be cultivated by it, 218.
" Construction of the lessons, 218-222.
" Lesson in Fractions, 224-228.
" Tables of Denominate Numbers-Examples, 229
Fractions Come from the unit one, 139.
" should be constantly compared with one, 170.
" Definitions of, 208.
" Lessons in, in First Arithmetic, 224-228
Fractional units, 163; orders of, 164; language of, 164-167, 201.
66
" three things necessary to their apprehension, 168.
"
" advantages of, 169.
" " two things necessary to their being equal, 169.
Galileo, Imprisoned in the 17th century, 393.
Generalization...The process of contemplating the agreement of several objects in certain points, and giving to all and each of these objects a name applicable to them in respect to this agreement, 14.
"
implies abstraction, 14.
Genus...........The most extensive term of classification, and conse-
quently the one involving the fewest particulars, Sections 16, 17.
Gends Highest. That which cannot be referred to a more extended classification, 19.

*	Subaltern. A species of a more extended classification, 18.
Qeometrical "	Magnitudes, three classes of, 242,277. " do not involve matter, 251 .
"	their boundaries or limits, 251.
"	* each has its unit of measure, 250.
"	" analysis of comparison, 274, 275.
"	to what the examination of properties has reference, 27%.
"	Proportion, 171; Ratio, 171; Progression, 178.
Geometri	Treats of space, and compares portions of space with each other, for the purpose of pointing out their properties and inutual relations, 241.
*	Why a deductive science, 261.
"	First notions of, how acquired, 368-370.
*	Practical utility of, 407.
6	Origin of the science, 410.
${ }^{6}$	Its place in a course of instruction, 359.
a	Analytical, Examines the properties, measures, and relations of the Geometrical Magnitudes by means of the analytical symbols, 285, 286.
a	" originated with Descartes, 285.
■	" difference between it and Calculus, 288.
*	" its importance, extent, and methods,
	386.

DEsCRIPTIVE. That branch of mathematics which considers the positions of the Geometrical Magnitudes as they may exist in space, and determines these positions by referring the magnitudes to two planes called tho Planes of Projection, 362. how regarded in France, 362.

Governor,
Grammar Gravitation,

Functions of, in machinery, 408.
Defined, 120.
Law of, 32, 394.

Hall, Captain's, voyage from San Blas to Rio Janeiro, Section 404.
Harlem river, Bridge over, and width, 412.
Herschel, Sir John, Quotation from, 27, 372, 395, 409.
Hull of the steamship, how formed, 409.
Illative Conjunctions, 48.
Illicit Process.. When a term is distributed in the conclusion which was not distributed in one of the premises, 67.
Indefinite Propositions, 62.
Index Of a root, 209.
Indoction Is that part of Logic which infers truths from facts, 30-33.
". Logic of, 30 .
" Example of, Blakewell, 32 ; of Newton, 32.
" based upon the relation of cause and effect, 33.
" Reasoning from particulars to generals, 34.
" its place in Logic, 72.
" how thrown into the form of a syllogism, $74,102$.
" Truths of, verified by Deduction, 385, 386.
Inertia proportioned to weight, 272.
Infinity,....... The limit of an increasing quantity, 306-310.
Integral Numbers, why easier than fractions, 170.
" constructed on a single principle, 235.
Intuition Is strictly applicable only to that mode of contemplation, in which we look at facts, or classes of facts, and immediately apprehend their relations, 27.
Iron,
different ideas attached to the word, 372.
Judgment Is the comparing together in the mind two of the notions (or ideas) which are the objects of apprehension, and pronouncing that they agree or disagree, 8.
"
is either Affirmative or Negative, 8.
Kant,
Quotation from, 21.
Knowledge Is a clear and certain conception of that which is true, 23.
"
facts and truths elements of, 25.
of facts, how derived, 25.
${ }^{\star}$

Kxowledge, the greater part matter of inference, Section 20.
"
"
" the increase of, renders classification necessary, page 20.

Laxguage Affords the signs by which the operations of the mind are recorded, expressed, and communicated, 10.

Laws of Nature, Science makes them known, 21, 319. " refers individual cases to them, 55. generalized facts, 55.
include all contingencies, 372 .
every diversity the effect of, 396 .
Lemma,
Leng th
Lessons
"
Letter
"

Levelling The application of the principles of Trigonometry to the determination of the difference between the distances of any two points from the centre of the earth, 361.
"
Its practical uses, 351 .
Limit,

- of discontinuous quantity, 323.
* of continuous quantity, 325.
differently defined, 339-343.
Live One dimension of space, Sections 82, 243.
A straight line does not change its direction, 82
243, 368.
Curved line, one which changes its direction at every
point, $82,243$.

Mathematical	Reasoning conforms to logical rules, Section 73. " every truth established by, is developed by a process of Arithmetic, Geometry, or Analysis, or a combination of them, 96.
Mathematres	The science of quantity, 76.
*	Pure, embraces the principles of the science, 98 to 104 " on what based, 100.
*	Mixed, embraces the applications, 104.
*	Primary signification, 99.
*	Language of, 90.
*	"Exact science," 100.
-	Logical test of truth in, 100.
*	a deductive science, 100, 101.
*	concerned with number and space, 73, 76, 108.
*	What gives rise to its existence, 103.
\cdots	Why peculiarly adapted to give clear ideas, 374-370, 379.
\cdots	a pure science, 379 .
*	considered as furnishing the keys of knowledge, 381.
*	Widest applications are in nature, 384.
*	Effects on the mind and character, 378, 390.
*	Guidance through Nature, 390.
\cdots	Its necessity in Astronomy, 391.
*	Results reached by it, 399, 400.
\cdots	Practical advantages of, 405.
*	What a course of, should present, and how, 366
\%	Reasonings of, the same in each branch, 349.
*	Faculties required by, 851.
"	Necessity of, to the philosopher, page 16.
Measure	A term of comparison, 105.
-	Unit of, should be exhibited to give ideas of numbers, 140.
*	" for lines, surfaces, volumes, 253.
"	of a magnitude, how ascertained, 253.
Middle Tern:	distributed when the predicate of a negative proposttion, 64.
"	When equivocal, 67 .
Mill, Mr.	his views of Logic, 72, 74.
Mind,	Operations of, in reasoning, 6.
	Abstraction a faculty, process, and state of, 18 Processes of, which leave no trace, 68.

Mind,	Faculties of, cultivated by Arithmetic, Section 188. Thinking faculty of, peculiarly cultivated by mathematics, $375,376$.
Minus sign, Motion	Power of, fixed by definition, 301. proportional to force impressed, 272.
Multiplication,	Readings in, 130 ; examples in, 161. What the deñition of, requires, 185.
Multiplication,	All operations in, governed by one principle, 236. in Algebra, illustrations of, 303-305.
Names,	Definitions are of, 1. given to portions of space, and defined in Geometry. $242 .$
Naturalist	determines the species of an animal from examining a bone, 383.
Negative	premises, nothing can be inferred from, 67. demonstration, its nature, 267-269; illustration of 268.
Newton,	his method of discovery, 32 . changed Astronomy from an experimental to a doductive science, 387-389.
"	Lemmas, 329-337.
"	in harmony with Leibnitz, 341.
Non-distribution	of terms, 61.
	Word "some" which marks, not al ways expressed, 62. . A unit, or a collection of units, 78.
"	How learned, 78.
"	Axioms for forming, 78, 308.
"	Three ways of expressing, 113.
${ }^{\prime}$	Ideas of, complex, 115.
"	Two things necessary for apprehending clearly, 117.
"	Simple and Denominate, 118.
"	Examples of reading Simple, 137.
"	Two ways of forming from one, 138.
"	first learned through the senses, 140, 366.
"	Two ways of comparing, 171. compared, must be of the same kind, 179-183.
*	Definitions of, 205, 206.
\cdots	must be of something, 279 . may stand for all things, 280.

NuMBER. | First lessons in, impress the first elements of mathe. |
| :--- |
| matical science, Section 352. |

Olmsted's	Mechanics, quotation from, 273.
Optician,	Illustration, 216 .
Oral Arithmetic, its ineficiency without figures, 223.	
Order of subjects in Arithmetic, 190.	

Parallelogram...A quadrilatera! having its opposite sides, taken two and, two parallel, 246.
" regarded as a species, 17 ; as a genus, 18.
" Properties of, 260.

Particular
"
Pendulun, Philosophy,
Place,

Plane That with which a straight line, having two points in common, and anyhow placed, will coincide, 244.
"
First idea of, how impressed, 360.
Plane Figune. . Any portion of a plane bounded by lines, 244.
Plane Figures in general, 247.
Ponvt..........That which has position in space without occupying any part of $\mathrm{it}, 80$.
Points, extremities or limits of a line, 243.
Practical Rules in Arithmetic, 185, 186.
" The true, 211, must be the consequent of science, 232.
" Popular meaning of, 401, 403.
"
" Consequences of an erroneous view of, 404.
" True signification of, 404.
Practice . precedes theory, but is improved by it, 42.
"
Predicate That which is affirmed or denied of the subject, 38 .
" Distribution, 63.
" Non-distribution, 63.
"
Premise Each of two propositions of a syllogism admitted to be true, 40.

Premise	Major Premise-The proposition of a syllogism which contains the predicate of the conclusion, Section 40.
	Minor Premise-The proposition of a syllogism which contains the subject of the conclusion, 40.
Pressure,	a law of fluids, 414.
Principle	of science applied, 22.
"	on which valid arguments are constructed, 52.
"	Value of a, greater as it is more simple, 54.
"	Aristotle's Dictum, a general, 55.
"	the same in the ground rules for simple and denomi. nate numbers, 159-162, 236.
"	of science and rule of art, 187.
Principles	should be separated from applications, 194, 195. of science are general truths, 212.
"	of Arithmetic, how taught, 212.
"	should precede practice, 233.
"	of Mathematics, deduced from definitions and axioms, 301.
Process	of acquiring mathematical knowledge, 366-370
Product	of several numbers, 206.
Progression,	Geometrical, 178.
Property	of a figure, 260.
Proportion	. .The relation which one quantity bears to another with respect to its being greater or less, 171, 271-273.
"	Arithmetical and Geometrical, 171.
"	Reciprocal or Inverse, 273.
"	of geometrical figures, 274-27\%.
Proposition	A judgment expressed in words, 35.
"	All truth and all error lie in propositions, also answers to all questions, 36.
"	formed by putting together two names, 37.
"	consists of three parts, 38.
"	subject and predicate, called extremes, 38.
"	Affirmative, 39 ; Negative, 39.
"	Three propositions essential to a syllogism, 40.
"	Universal, 62.
"	Particular, 62.

Quadrilateral..A portion of a plane bounded by four straight linee, 246.

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { Reading } \\
\text { " }\end{array} & \begin{array}{l}\text { in Multiplication, Section } 129 . \\
\text { in Division, } 130\end{array}
$$

of figures, its aid in practical operations, 234.\end{array}\right]\)| To make use of arguments, 42. |
| :--- |

Scale of Tens, Units increasing by, 131-137, 165, 191.
Sciexce.........In its popular sense means knowledge reduced to order, 21, 276.
I-" In its technical sense means an analysis of the laws of nature, 21.
"
" of Arithmetic, 180.
" Principles of, 204, 212.

- Methods of, must be followed in Arithmetic, 232.
of Geometry, 241, 252, 261.
Objects and means of pure, 372.
should be made as much deductive as possihle, 386.
Deductive and experimental, 387.

Science
.when experimental, Sections 388,389 ; when deductive, $388,389$.

"	What it has accomplished, 398.	
"	Practical value of, in factories, 408 .	
"	"	"
	" in constructing steamships, 409.	
		" in laying out and measuring land,
		410.

" " " " in constructing railways, 411.
" Its power illustrated in Croton aqueduct, 412.
" What constitutes it, 354.
Second Arithmetic, its place and construction, 231-234.
Sextant, its uses in Navigation, 409.
Silades, Sifadows, and Perspective-An application of Descriptive Geometry, 363.
Significate.... An individual for which a common term stands, 15.
Signs, \quad Six used to denote operations on quantity, 203.
" How to be interpreted, 294.
" do not affect the nature of the quantity, 294, 300 .
" indicate operations, 300.
 try, 242.
Spectes One of the divisions of a genus in which the characteristic is less extensive, but more full and complete, 16, 17.
Subspecies-One of the divisions of a species, in which the characteristic is less extensive, but more full and complete, 16, 19.
Lowest Species-A species which cannot be regarded as a genus, 17.
Spelling, $\quad 120$; in Addition, \&c., 122-130.
Square........A quadrilateral whose sides are equal and angles right angles, 249.
Statement of a proposition in Algebra, 312.
*

$$
\text { in what it consists, } 313 \text {. }
$$

Steamship, an application of science, 409.
SUBJECT........The name denoting the person or thing of which
something is affirmed or denied, Section 38.

TriavaleThe simplest plane figure, Section 245.
Different kinds of, 245.
regarded as a genus, 260 .
Trigonometry. An application of the principles of Arithmetic, Alge-
bra, and Geometry to the determination of the
sides and angles of triangles, 360 .
Plane and Spherical, 360.

Units	of weight, Section 139.
"	of measure, 139, 146, 253.
	of length, 147.
"	of surface, 148.
\cdots	Duodecimal, 149.
"	of volume, 152.
"	Fractional, 163, 192.
United States,	Currency, 141.
Unity-Unit.	. Any thing regarded as a whole, 116, 117.
Universal	Proposition, 62.
Utility and	Progress, leading ideas, page 11.
Farlables.	Quantities which undergo certain clanges of value. the laws of which are indicated by the algebraic expressions into which they enter, 286, 287, 363.
"	represented by the final letters of the alphabet, 288.
Variations,	Theory of, 289.
Varying Scales,	Units increasing by, 138, 191.
Velocity	known bỳ measurement, 95.
Volusae	. A portion of, space having three dimensions, 84.
"	A portion of space combining the three dimensions of length, breadth, and thickness, 250, 370 .
"	Limit of, 297.
"	First idea of, how impressed, 370.
Volumes.	.bounded by plane and curved surfaces, 84.
"	Three classes of, 250.
"	Analysis of, comparison, 275, 276.
"	Comparison of, under the supnosition of changes, $2 \tau 0$.
Weight	known by measurement, 106.
"	should be exhibited to give ideas of numbers, 140.
"	Standard for, 258.
Whately,	Archbishop, his views of logic, 72.
Words,	Definition of, 120. expressing results of combinations, 197, 201.
"	Double, or incomplete sense of, 372.
ZeroThe limit of a decreasing quantity, 306-310. what quantities are denoted by $\mathrm{ft}, 343$.

Hillip unetn


```
14
```



```
5
```


$1+2$
14

$1+\frac{-\pi}{-2}$

[^31]

The National Series of Readers.

COMPLETE IN TWO INDEPENDENT PARTS.

1.

THE NATIONAL READERS.

By PARKER \& VATSNIV。
No. 1.-National Primer, G4 ppo, 1 Bmmo , 1.0. 2.-National First Reader, . . . 12:. ppp., zsmmo, No. 3.-National Second Reiader, . . 224 pp ., flimo, No. 4.-National Third Reader, . . 2ss pp., 12 mo , No 5.-National Fourth Reader, . . $\langle 32 \mathrm{pp} ., 12 \mathrm{mo}$, No 6.-National Fifth Reader, . . $B 00$ pp., 12 mo ,

National Elementary Speller, . . . $160 \mathrm{ppo}, 16 \mathrm{mo}$, National Pronouncing Speller, . . . $188 \mathrm{spm}, 12 \mathrm{mo}$, .

II.
 THE INDEPENDENT READERS.

By J. MADISON WATSON.
The Independent First (primary) Reader, 80 pp ., 16 mo , The Independent Second Reader, . SBo pp., 16 mo, The Independent Third Reader, . . 240 pp ., ftsme, The Independent Fourth Reader, . . \$86 pp., fzmo, The Independent Fifth Reader, . . sso pp., 12mo, The Independent Sixth Reader, . . 474 pp ., 12 mo ,

The Independent Child's Speller (Script), so pp., 18 mo , The Independent Youth's Speller (Script), res pp., 12mo, The Independent Spelling Book, . . $150 \mathrm{pp} ., 16 \mathrm{mo}$,

[^32]
PARKER \& WATSON'S NATIONAL READERS.

The sallent featnres of these works which have combined to render them at popular may be briefly recapitulated as follows:

1. THE WORD-BUILDING SYSTEM.-This famous progressive method fot soung children originated and was copyrighted with these books. It constitntet oprocess with which the beginner with words of one letter is gradually introfinced to additional lists formed by prefixing or affixing single letters. and is thut aded almost insensibly to the mastery of the more difficult constructions. This is one of the most striking modern improvements in methods of teacking.
2. TREATMENT OF PRONUNCIATION.-The wants of the youngest scholars in this department are not overlooked. It may be said that from the first lesson the siudent by this method need never be at a loss for a prompt and accurate ren dering of every word encountered.
3. ARTICULATION AND ORTHOEPY are considered of primary importance.
4. PUNCTUATION is inculcated by a series of interesting reading lessons, the simple perusal of which suffices to fix its principles indelibly npon the mind.
5. ELOCUTION. Each of the higher Readers (3d, 4th and 5th) coatains elaborate, scholarly, and thoroughly practical treatises on elocntion. This feature alone bas pecured for the series many of its warmest friends.
6. THE SELEOTIONS are the crowning glory of the series. Without excepthon it may be said that no volumes of the same size and character contain a collection so diversified, judicious, and artistic as this. It embraces the choicest gems of English literature, so arranged as to afford the reader ample exercise in every department of style. So acceptable has the taste of the authors in this department proved, not only to the educational public but to the reading community at large, that thousands of copies of the Fourth and Fifth Readers have found their way into public and private libraries thronghont the conntry, where theyare in constant use as mamnals of literature, for reference as well as perusal.
7. ARRANGEMFNT. The exercises are so arranged as to present constantly alternating practice in the different styles of composition, whilc observing a def. nite plan of progression or gradation throughont the whole. In the higher books the articles are placed in formal sections and classified topically, thus concentrating the interest and inculcating a principle of association likely to prove valuable ir snbsequent general reading.
8. NOTES AND BIOGRAPHICAL SKETCHES. These are full and adequate to crery want. The biographical sketches present in pleasing style the history of every author laid under contribution.
9. ILLUSTRATIONS. These are plentiful, almost profuse, and of the higheat character of art. They are found in every volume of the series as far as and including the Third Reader.
10. THE GRADATION is perfect. Each volume overlaps its companion preceding or following in the series, so that the scholar, in passing from one to ar. other, is only conscious, by the presence of the new book, of the transition.
11. THE PRICE is reasonable. The National Readers contain more matte than any other series in the same number of volumes published. Considering their completcness and thoroughness they are much the cheapest in the markef
12. BINDING. By the use of a material and procesa known only to themselves, m common with all the pnblications of this house, the National Readera are warranted to ontlast any with which they may be compared-the ratio of relative dy rability being in their favor as two to one.

National Series of Stundard School-Tookis.

WATSON'S INDEPENDENT READERS.

This Saries is designed to meet a general demand for emaller and cheapes nooks than the National Serles proper, and to serve as well for luternediate volnmes of the National Readers in large graded schools requiring more books than one ordinary series will supply.

Beauty. The most casual observer is at cnee impresed with the unparalleld mechanical beauty of the Independent Readers. The Publishers believe that the esthetic tastes of children may recelve no emall degree of cuitivation from thelr very earliest school books, to say nothing of the importance of making etndy attractive by all such artificial aids that are legitimate. In accordanee with this view, not less than with a result which eutites them to be consldered "The Perfection of Common Schoul Books."

Salactions. They contain, of course, none bnt entirely new selections. There cre arranged aecording to a strictly progressive and uovel method of developing ihe elementary sounds in order in the lower numbers, and \ln all, with a view to opies and general ifterary etyie. The mind is thus led in fixed channels to prof ciency in every braneh of good reading, and the evii resulte of 'scattering ' as pracUised iy most echool-book author, a a oided.

The Illustrations, as may be Inferred from what has been said, are elegant beyond comparison. They are profuse in every uumber of the series from tho lowest to the highest. This is the only series published of whieh tils ls true.

The Type is semi-phonetic, the invention of Prof. Wateon. By it every letter haring more than one eo:nd is clearly distinguished in all its variatlons without in any way matilating or disguising the normal form of the letter.

Elcoution is tanght by prefatory treafises of constantly adrancing grade and completeness in each volume, whleh are ilinstrated by wood-cuts in the iower hooks, and by black-board diagrams in the higher. Prof. Watson is the first to introduce Praetical Iliustrations and Blaek-board Diagrams for teaching this branek.

Foot Notes on every page afford all the incidental instruetion which the teacher is usually required to impart. Indices of words refer the pupil to the place of their first ase and definition. The Biographles of Authois and others are in every sense excellent.

Esonomy. Although the number of pages \ln each volume ls fixed at the minimum, for the parpose recited above, the utmost amount of matter arallable without overcrowding is obtalned in the space. The pages are mnch wider and larger than those of any competitor and contain tuenty per cent more matter than any other serles of the same type and number of pages.

All the Great Features. Besides the above ail the popular features of the National Readers are retained except the Word-Building eystem. The lattes gives place to an entirely new method of progresslve development, based upon some of the best festures of the Word System, Phonetics and Olject Lesaons.

ORIGINAL AND "INDEPENDENT" SERIES GPECIMIDN TESTIAFONIALS.

Firom D. H. Harris, Supt. Public Schools, Hannibal, Jlo. The National Scrics of Readers are now in use in our public echools, and I regara them the best that I have ever examined or used.

From Hon. J. K. Jillson, Supt. of Education, Slate of South Carolina.
I have carefnlly examined, your new and beantiful Scicies of Readers known as "The Independent Readers," and do not hesitate to recommend it as the finest and most excellent ever presented to the public.

Irom D. N. Rook, Sec. of School Board, Wuzameport, Pa.
I would say that Parker \& Watson's Series of Readers and Spellers give the best satisfaction in our schools of any Series of Readers and Spellers that have ever been used. There is nothing publisherl for which we would exchange them

> From Prof. M. Seele, Nen Braunfels Academy, Texas.

I recommend the National Readers for four good reasons: (1.) The printing, en graving, and binding is excellent. (2.) They contain choice selections from English Litcrature. (3.) They inculcate good morals without any sectarian bias. (4.) Ther are truly National, becanse thcy teach pure patriotlsm and not sectional prejudice.

From S. Findlex, Supt. Akron Schools, Ohio.
We use no others, and have no desire to. They give entire satisfaction. We like the freshness and excellence of the selcctions. We like the biographical notes and the definitions at the foot of the page. We also likc the white paper and clear and beantiful type. In short, we do not know where to look for books which would be so satisfactory both to teachers and pupils.

Trom Pres. Robert Allyn, McKendree College, 11.

Since my connection with this college, we have used in onr preparatory depart ment the Seriss of Readers known as the "National Readers," compiled by Parker \& Watson, an. 1 published by Messrs. A. S. Barnes \& Co. They are excellent ; affor choice selections; contain the right system of elocutionary instruction, and arn well printed and bound so as to be serviccable as wcll as interesting. I can com mend them as among the exccllent means usel by teachers to make their pupila proficient in that noblest of school arts, Good Reading.

From W. T. Harris, Supt. Puilic Schools, St. Louis, Mfo.
I have to admire these excellent selections in prose and verse, and the carefu arrangement which places flrst what is easy of comprehension, and proceeds gradi ally to what is dillicult. I find the lessons so arranged as to bring together differ ent trcatments of the same topic, thereby throwing mnch light on the pupil's path, and I doubt not adding greatly to his progrese. The proper variety of subjecte chosen, the concise treatise on elocntion, the beautiful typography and substantia binding-all these I find still more admirable than in the former series of Nationai Readers, which I considered models in these respects.

From H. T. Pemlips, Esq., of the Board of Education, Atlanta, Ga.
The Board of Education of chis citt have selected for use in the public schoolof Atlanta the entire series of your Independent Readers, together with Steele (Themistry and Philosophy. As a member of the Board, aud of the Committee or Text-books, the snbject of Readers was referred to me for examination. I gave? pretty thorongh examination to ten (10) different serics of Rcaders, and in endes voring to arrive at a decision upon the sole question of merit, and entirely inde pendent of any extraneons influence, I very cordially recommended the Independen Series. This verdict was approved by the Committee and adopted by the Board.
From Report of Rev. W. T. Brantly, D.D. late Professor of Belles Lettres, Univer sity of Georgia, on "Text-Books in Reading," before the Teacherg' Convention of' Georgia, May 4, 1870.
The National Series, by Parker \& Watson, is deserving of its high reputation. The Primary Books are suited to the weakest capacity; whilst those more advanced supply instructive illustration on all that is needed to be known in conneration wit' the art.

The Vational Series of Standral School-Books.

V ATSON'S CHILD'S SPELLER. THE INDEPENDENT CHILD'S SPELLER.

This unlone book, pnblished in 1872, is the first to be consistently prinied is matation of writing: that is, it teaches orthography as we use iL. It is for the snallest class of learners, who soon become famlliarized with words by thein forma ad learn to read writing while they eperl.

EXTRACT FROM THE PREFACE

Success in teaching English orthography is still exceptional, and it must an conthne until the principles involved are recoraized in practice. Form is foremost: the f ye and the band must be trained to the formation of words; aud since syelling is a par\% of writing, the written form only should be used. The laws of mental asfociation, also-especially those of resemblance, contrast, and contignity in time and place-shouid receive sach recognltlon in the construction of the text-book an siall ussure, whether conscionsiy or not, their appropriate use and legitimate reenit. Hence, the spelling-book, properiy arranged, is a necessity from the first; and, :tougt primers, readers, and dictionaries may serve as aids, it can have no competent mubstitnte.
Consistently with these views, the words used in the Independent Child's Spelle, Lave such original classifications and arrangements in columns-in reference o location, number of letters, vowei sounds, alphabetic equivalents, and consonar terminations-as exhibit most effectively their formation and pronnnciation. Th vocabulary is strictly confned to the simple and kiguificant monosyllables in com. mon tse. He who has mastered these may easily learn how to spell and pronounce words of more than one syilabie.

The introdnction is an illuztrsted aiphabet in reript, containing twenty-six pico tures of objects, und their namss, commencing both with capitais and small ietters. fart First embrawes the words of one, two, and three ietters; Part Second, the words of fonr letters; and Part Finird, other monosyllabies. They are divlded into short lists and arranged in colnmns, the vowels usually in line, $n 0$ as to exhibit individnai characteristics dad similarity of formation. The division of words into paragraphs is shown by figures in the columns. Each list is immediately followed by sentences for reading and writing, in which the same words are again presented with irregularities of form and sonnd. Associatlon is chns emplosed, memory tested, and definition most satisfactorily tanght.

Among the novel and vaiuabie featnres of ti-9 lessuns and exercises, probably the most prominent are their adaptedness for yonng shildren and their being printed in exact imitation of writing. The anthor believer that hands large enough to spin a top, drive a hoop, or catch a ball, are nut too smali to use a crayon, or a flate and pencil; that the child' ε naturai desire to draw and write a'onld not be thwarted, bnt gratified, encouraged, and wisely directed; and that since the written form is the one actually used in connection with spelling in after-ife, the eye and the hand of the child shonld be trained to tant form from the frst. He hopes that thls iltte work, daslened to precede ali other spelling-books and confirt wits noze, may eatisfy the need so rniversal:y recognizel uf a fit introductina to ertbograply, nea mansh: p, and Euglish composition.

The National Series of Standard School- Josis.

The National Readers and Spellers.

THEIR RECORD.

Thesc books have been adopted by the School Boards, or officia? authurity, of be following important States, cities, and towns-in most cases for exclusive use

The State of Missouri.
The State of Kentucky.
The State of Alabama.
The State of Florida.
The State of North Carolina.
The State of Delaware. The Stato of Louisiana.

NTew York.
New York City.
Brooklyn.
Buffalo.
Albany.
Rochester.
Troy.
Syracuse.
Elmira. \&c., \&c.

Pennsylvania.
Reading.
Zancaster.
Erie.
Scranton.
rarlisle.
Carbondals.
Westchester.
Schuylkill Haven.
Williamsport.
Norristown.
Bellefonte.
Wilkesbarre. $\& c ., \& c$.

New Jersey.

Newark.
Jersey City.
Paterson.
Trenton.
Camden.
Elizabeth.
New Brunswick.
Phillipsburg.
Orange.
\&c., \&c.
Delaware.
Wilmington.
D. C.

Washington.

Illinois.
Chicago.
Peoria.
Alton.
Springfield.
Aurora.
Galesburg.
Rockford.
Rock Island. $\& c ., \& e^{0}$

Wisconsin.

Milwaukee.
Fond du Lac.
Oshkosh.
Janesville.
Racine.
Watertown.
Sheboygan.
La Crosse.
Wankesha.
Kenorha.
\&c., \&c.

Michigan.

Grand Rapids.
Kalamazoo.
Adrian.
jackson.
Molroe.
Lansing.
\&c., \&c.
Ohio.
Toledo.
Sardusky.
Conneaut.
Tharcion.
fudson.
Canton.
Salcm.
\&c., \&c.

Indiana.
New Albany.
Fort Wayne.
Lafayette.
Madison.
Iogansport.
Indianapolis.
Iow..
Davenport.
Burlington.
Mriscatine.
Mount Pleasatm. $\& c$.

Nebraska
Brownsville.
Lincoln.
\&c.
Oregon.
Portland
Salcm.
\&c.
Virginia
Richmond.
Norfolk.
Pctersburg.
Lynchburg.
\&c.
South Caroliea
Columbia.
Charleston.
Georgia.
Savannah.
Louisiana.
New Orleans.
Tennessue
Memphis
so Educational Bulletin records periodically all new points gained

SCHOOL-ROONI CARDS.

Baade's Reading Case,

A frame containing morabie cards, with arrangement for ehowing one sentence at a time, capable of 28,000 tramspusitious.

Eureka Alphabet Tablet

Presents the alphabrt upon the Word Methor System, by which the ehild will learn the alphabet in nitue days, and make no suali progress in reading and spelling fi: the same time.

National School Tablets, 10 Nos.

Embrace reading and conversutional exerefses, objeet and morai lessons, form, color, \&e. A complete set of there large and elegutly illustrated Cards will embeilisa the schooi-room muru than any other article of furniture.

READING.

Fowle's Bible Reader

The narrative portions of the Bille, chronologically and topleally ar ranged, judiciously combined with seleetions from the Psalms, Proverbs, ano other portions whiel inculcate linportnimt moral lexsons or the great truths of Christianity. The embarrassment and diffieulty of reading the Inille itself, by conrse, as a cinss exereise, are obviated, and its use made feasible, by this meaus.

North Carolina First Reader North Carolina Second Reader North Carolina Third Reader

Prepared expressly for the sehnols of this State, by C. II. Wiley, Super. intendent of Common Schools, and F. M. Hubbard, Protesoor of Literaature in the State University.

Parker's Rhetorical Reader

Designed to familiarize Readers with the panses and other marks in general use, and lead them to the practiee of modulation and lnflection of the voice.

Introductory Lessons in Reading and Elocution

Of similar eharaeter to the foregoing, for less advanced classes.

High School Literature

Adnirable sefections from a long llst of the world's bast writers, for exercise in reading, oratory, and composition. Spucches, dlalogues, and model letters represent the latter departuent

ORTHOGRAPHY. SMITH'S SERIES

Supplies a speller for every class in graded schools, and comprises the most complete und excellent treatise on English Orthography and its companion branches extant.

1. Smith's Little Speller.

First Ronnd in the Ladder of Learning.
2. Smith's Juvenile Definer

Lessons composed of familiar words gronped with rererence to similar signification or use, and correctly spelled, accented, and defined.
3. Smith's Grammar-School Speller

Familiar words, grouped with reference to the sameness of sound of sy!lables differently spelled. Also definitions, complete rules for spelling and formatlon of derivatives, and exercises in faise orthography.
4. Smith's Speller and Definer's Manual
5. Smith's Etymology-Small, and Complete Ed's.

The first and only Etymology to recognize the A nglo-Suzon our mothe tongue; containing also full lists of derivatives from the Latin, Greek, Gaelic, Swedish, Norman, \&c., \&c : heing, in fact, a complete etymology of the language for schools.

Sherwood's Writing Speller
 Sherwood's Speller and Definer
 Sherwood's Speller and Pronouncer

The Writing Speller consists of properl; zuled and numbered barks to receive the words dictated by the teacher, with space for remarks sind corrections. The other volumea may be used for the dictation or orninary class exercises.

Price's English Speller

A cr.mplete spelling-book for a!l grades, containing more mater than "Wehster," manufactured in superior style, and sold at a lower priceconsequently the cheapest speller extant.

Northend's Dictation Exercises

Embracing valuahle information on a thousand topics, comninnicated in such a manner as at once to relieve the exercise of spelling of its usuas) tedium, and comhine it with instruction of a general character calculated to profit anc amuse.

Wright's Analytical Orthography

This standard work is popular. because it teaches the elementary sounds In a plain and philosophical mainer, and presents orthography and os thoepy in an easy, uniform system of snalysls or parsing.

Fowle's False Orthography

Exercises for correction.
Page's Normal Chart
The elementary sounds of the language for the school-room walls,

The Viational Sertes of Standurd School-Books.

ORTHOGRAPHY-Continued.

Barber's Complete Writing Speller

"The Student's Own Hand-Book of Orthograpliy, Definitiona, and Sentencea consisting of Written Exercises in the Proper iuclliug. Meaning, and Use of Words." (Published 1st3.) This differs from Sherwood's and other Writing Spellers in its more comprehensive character. Its blanks are adapted to writing Whole sentences instead of detached words, with the proper divisions for nnmlering, corrections, etc. Such aids as this, like Watson's Child'e Speller and Sherwood's Writing Speller, find their raison u 'étre in the fostulate that the art of con rect spelling is dependent upon written, and not apon apoken language, for its util ity, if not for its very existence. Hence the indirectnese of purely oral instruction.

Pooler's Test Speller

The best collection of "hard words" yet made. The more nncommon ones are fully defined, and the whole are arranged alphabetically for convenient reference. The book is designed for Teachers' Inetlintes and 'Spelling Schools," and is propared by an experienced and well-known conductor of Institutes.

ETYMOLOGY.

Smith's Complete Etymology, Smith's Condensed Etymology,

Containing the Anglo-Saxon, French, Dutch, German, Weleh, Danish, Gothic Swedish, Gaelic, Italian, Latin, and Greek Roots, ano the English words derived therefrom accurately spelled, accented, and defined.

From How. Jno. G. McMrnn, late State Superintentout of Wisconsin. I wish every teacher in the country had a copy of this work.

From Prin. Wm. F. Phelps, Minn. State Normad.

The book is superb-jnst what is needed in the department of atymology and epelling.

Fhom Prof. C. H. Verrill, Pa. State Normal Schoa:
The Etrmology (Smith'e) which we procured of you we like marb. It is the best work for the class-room we have seen.

From Hon. Edward Ballard, Supt. of Common Schools, State of Maine. The anthor has furnished a manual of eingular utility for its parpose.

DICTIONARY.

The Topical Lexicon,

This work is a School Dictionary, an Etrmology, a compllation of synonrme, and a manual of general information. It differs from the ordinary lexicon in belme arranged by topics instead of the letters of the alphabet, thns realizing the appareai paradox of a "Readable Dictionary." An unusually valuable echool book.

ENGLISH GRAMMAR.

CLARK'S DIAGRAM SYSTEM.

Ciark's Easy Lessons in Language,

Published 1874. Contains illustrated object-lessons of the most attractive charac. tcr, and is couched in language freed as much as possible from the ciry feebnicalities of the science.

Clark's Brief English Grammar,

Published 1872. Part I. is adapted to youngest learners, and the whole forms a complete "brief course" in one volume, adequate to the wants of the common school.

Clark's Normal Grammar,

Published 18\%0, and designed to take the place of Prof. Clark's veteran "Practical" Grammar, though the latter ls still furuished upon order. The Normal is an entirely new treatisc. It is a full exposition of the system as described below, with all the most recent improvements. Some of its peculiarities are-A happy blending of Syntheses with Analyses; thorough Criticisms of common errore in the use of our Language; and important improvements in the syutax of Senteucez and of Phrases.

Clark's Key to the Diagrams,
 Clark's Analysis of the English Language, Clark's Grammatical Chart,

The theory and practice of teaching grammar in American schools is meeting with a thorongh revolution from the use of this system. While the old methods offer proficiency to the pupil only after much weary plodding and dull memorizing, this affords from the inception the advantage of practical Object Teac'iing, address. ing the eye by means of illustrative figures; furnishes association to the mamory, its most powerfal aid, and diverts the pupil by taxing his ingennity. Teachers who are using Clark's Grammar uniformly testify that they aud their pupile find it the most interesting study of the school course.
Like all great and radical improvements, the system naturally met at first with much nureasonable opposition. It has not only outlived the greater part of this opposition. but finds many of its warmest admirers among those who cuuld not at first tolerate so radical an innovation. All it wants is an impartial trial to convince the most skeptical of its merit. No one who has fairly and intelligently tested it in the school-room has ever lieen known to go back to the old methad. A great success is already establishci, and it is easy to propheey that the day is not far distant when it will be the only system of teacling English Grammar. As the SYsTEm is copyrighted, no other texi-books can appropriate this obvious and great improvement.

Welch's Analysis of the English Sentence,

Remarkable for its new and simple classification, its method of treating conneo <ives, its explanations of the idioms and constructive laws of the language, etc.

The Vational Series of Slauderd Scleonl-Books.

Clark's Diagram English Grammar.

TESTIMONIALS.

From J. A. T. Dervix, Principal Dubuene R. C. Acadsmy, Iova.

In my opinion, it is well calculated hy its system of analysis to develop those rational facultes which in the old systems were rather lef to develop themselven, while the unemory was overtazed, and the pupils dlscouraged.

From B. A. Cox, Schonl Commissioner, Warren County, Illinois.
I have examined 150 teachers in the aast year, and those haring studled or taught Clark's System have universally stood fifty per cent hetter examinatious than thote baving studied other nuthors.

From M. II. B. Berket, Principal Bfusonic Institute, Georgetoron, Tennessee.
I traveled two years amusing myself in lastructing (exelusively) Grammar elanses with clark's system. The first class I hustructed fifty dayg hut found that this was more time than was required to impart a theoretical knowledge of the sciance During the two years thereafter I Instructed classes only thirty days each. Invariahly I propinsed that unless I prepared tay classes for a nore thorough, minute, and aconrate inowledge of Einglish Gramuar than that ohtalned from the ordinary books and In the ordnary way in from onte to two years, I would make no clarge I never falled in a solitary case to far exceed the hopes of my classes, and mado money and character rapidly as an instructor.

From A. B. Douglabs, School Commissioner, Delawars County, Newo York

I have never known a class pursue the study of it under a live teacher, that has not succeeded; I have never known it to have an opponent in an educated tencher who had thoroughly iuvestigated it; I have never known an ignorant teacher to examine it; I have never known a teacher who has used it, to try auy other.

Frorn J. A. Doman, Tatcher and Lecturer on English Grammar, Kentuchy.
We are tempted to assart that lit foretells the dawn of a hrighter age to our mothertongue. Both pupil and seacher can fare sumphuously upon lis contenta, however highly they may have prized the manuals into whleh they may have been luitiated and by which their expressions have heen moulded.

Frome W. T. Chapman, Superintendent Public Sehnots, Tellingtom, Ohio.
I regard Clark's System of Grammar the best published. For teaching the acalysfb of the Engliph Language, it surpasses any I ever used.

From F. S. Lron, Principal South Norralk Union School, Connectacul.
suring ten years' experience in teaching, I have used six different authors on the on bject of I'nglish Grammar. I am fully convisced that Clark's Grammar ls better calculated to make thorough grammarians than any other that I have seen.

From Catalogur or Robrbe's Commebclal Collzge, St. Louis, Sissouts.
We do not hesitate to asscrt, without fear of successful contradictlon, that a hettor knowledge of the Enplish language can he ohtalned by this systeru in six weeks than by the old methods in as many months.

From A. Ptekert, President of the State Teachers' Assoriation, Wisconsin,
A thorough experimeut in the use of many approved anthois upon the subject of Einglish Granmar has convinced me of the superiority of Clark When the pupil has completed the course, he is Ifft upon a foundation of prixciple, and aot upon the dio. : wn of the author.

From Gro. F. McFabland, Prin, MeAllisterville Academy, Juniata Co., Penn,
At the first examination of public-school teachers hy the county superintendent, when one of our student teachers comnenced analyzing a sentence ascording to Ciark, the superintendent llstencd in nute astonlshueut until ha had sulshed, ihen asked What that meant, and finally, with a very knowing book, sald such work zouldn't do bere, and asked the applicant to parse the sentenre right, and gave the lowest certif. cates to all who barely mentioned Clark. Afterwards, I prcsented hlm wlilr a copy, and the next fall he permilted it to he partially used, whlle the tislod of last fall, he apenly commended the systern, and appointed three of my best teacher to explain it at the two Instltutes and one County Conventlon held slnce Sephember.

3- For further teatimony of equal force, see the Publishern' Specia Circular, of rurrent numbers of the Educational Bulletio.

GEOGRAPHY.

NATIONAL GEOGRAPHICAL SYSTEM.

THE SERIES.

1. Monteith's First Lessons in Geography,
II. Monteith's New Manual of Geography,
II. McNally's System of Geography,

INTERMEDTATE OR ALTERNATE VOLUMES.
1*. Monteith's Introduction to Geography, 2*. Monteith's Physical and Political Geography,

ACCESSORIES.

Monteith's Wall Maps 2 sets (see page 15), Monteith's Manual of Map-Drawing (Allen's System) Monteith's Map-Drawing and Object-Lessons, Monteith's Map-Drawing Scale,

1. PRACTIOAL OBJEOT TEACHING. The infant scholar is first introduced to a picturs whence he may derive notions of the shape of the earth, the phenomena of day and night, the distribntion of land and water, and the great natural divisions, which mere words would fail entirely to convey to the untutored mind. Other pictures follow ou the same plan, and the child's mind is called upou to grasp no idea without the aid of a pictorial illnstration. Carried on to the higher books, this system culminates in Physical Geography, where such matters as climates, ocean currents, the winäs, peculiarities of the earth's crust, clonds and rain, are pictorially explained and rendered apparent to the most obtuse. The illustratious used for this purpose belong to the highest grade of art.
2. OTAEAR, BEAUTIFUL, AND CORRECT MAPS. In the lower numbers the maps avoid nnnecessary detail, while respectively progressive, and affording the pupil new matter for acquisition each time he approaches in the constautly enlarging circle the point of coincidence with previons lessons in the more elemeutary books. In the Physical and Political Geography the maps embrace many uew and striking features. One of the most effective of these is the new plan for displaying on each map the relative sizes of countries not represented, thns obviatiug much confusion which has arisen from the necessity of presenting maps in the same atlas drawn on different scales. The maps of "McNaily" have long been celeorated for their superior beanty and completeness. This is the only schoolbook in which the attempt to make a complete atlas also clear and distinct, has been suscessfnl. The map coloring throughout the series is also noticeable. Delicete and subdued tints take the place of the startling glare of iuharmonious colors which too frequently in such treatises dazzle the eyes, distract the attertion, and serve to overwhelm the names of towns and the natural katures of tbe kntscape.

GEOGRAPHY-Continued.

3. THE VARIETY OF MAP-EXERCISE, Starting each time from a different basis, the pupif in many instances approaches the same fact no less than ofx times, thus indelibly impressing it upon his mennory. At the same time, this system is not allowed to become wearisome-the extent of exercise on each subject being graduated by its relative importance or diflieulty of acquisition.
4. THE OHARACTER AND ARRANGEMENT OF THE DESCRIPTIVE TEXT. The cream of the seience has been carefuliy culled, nnimportant matter rejected, elaboration avoided, and a brief and coneise manner of presentation enltivated. The orderly consideration of topies has contributed greatly to simpilcity. Due attention is paid to the facts in history and astronomy which are inseparably connected with, and important to the proper understanding of geography-and such only are admitted on any terme. In a word, the National System teaches geography as a science, purc, simple, and exhanstive.
5. ALWAYS UP TO TEE TIMES. The authors of thesc books, editorialiy speaking, never sleep. No change occurs in the boundaries of conntries, or of counties, no new discovery is made, or railroad bnilt, that is not at once noted and recorded, and the next edition of each volume carries to every school-room the new order of things.
6. SUPERIOR GRADATION. This is the only series which furnishes an avallabic volume for every possible class in graded schools. It is not contemplated that a pupil mast neeessarily go throngh every volume in snceession to attain profleieney. On the contrary, two will snfflee, bnt three are advised; and, if the course will admit, the whole series should be parsued. At ali events, the books are at hand for selection, and every teacher, of every grade, can find among tiem one exactly suited to his class. The best combination for those who wish to abridge the conrse consists of Nos. 1, 2, and 3, or where children are somewhat advanced in other studies when they commence geography, Nos. 1*, 2, and 3. Where but twoo books are admissibie, Nos. 1* and 2*, or Nos. 2 and 3, are recommended.
7. FORM OF THE VOLUMES AND MECHANIOAL EXECOTION, The maps and text are no ionger unnaturally divorced in accordance with the time-honored practice of making text-books on this sabject as ineonvenient and expensive as possible. On the contrary, ali map qnestious are to be fonnd on the page opposite the map itself, and each book is complete in one volume. The mechanical exeention is nnrivalled. Paper and printing are everything that could be desired, and the binding is-A. S. Barnes \& Company's.
8. MAP-DRAWING. In 1800 the system of Map-Drawing devised by Profeasor Jerome Allen was secured exclusively for this series. It derives its claim to originality and usefulness from the introduction of a fixed unit of measurement applicabie to every Map. The principles being so few, simple and comprehensive, the subject of Map-Drawing is relieved of all practical difficulty. (In Nos. 2, 2*, and 3, and published separately.)
9. ANALOGOUS OUTLINES. At the same time with Map-Drawing was also introduced (in No. 2) a new and ingenions variety of Object Lessons, consisting of a comparison of the outlines of countries with familiar objects pictorially represented.

The Nationaz Series of Standard School-Ziocis -

GEOGRAPHY-Cont:nued.

HONTEITH'S INDEPENDENT COURSE.
 Elementary Geography
 Comprehensive Geography (with 103 Maps)

Tyese volumes are not revisions of old works-not an addition to any eries-but are entirely new productions-each by itself complete, independent, comprehensive, yet simple, brief, cheap, and popular: or, taken together, the most admirable "series" ever offered for a common-school course. They present the following features, skillfally interwoven-the student lcarning all about one country at a time.
IOCAL GEOGRAPEEY, or the Use of Maps. Important features of the Maps are the coloring of States as objects, and the ingenions system for laying flown a much larger number of names for reference than are fonnd on any other Maps of same sizemand without crowding.

PIETSICAI GSOGRAPEET, or the Natural Features of the Earth, illnstıated by the original and striking Relief Maps, being bird's-eye views or photographic pictures of the Earth's surface.

DESCRIPTIVE GEOGFAPIIE, including the Physical ; with some zccount of Governments, and Races, Animale, etc.

IIISTORICAI GEOGRAPEY, or a brief summary of the salient noints of history, explaining the present distribution of nations, origin of geographical names, etc.

MIATEIRMIATICAI GEOGRAPEY, including Astrowomical. which describes the Earth's position and character among planets ; also the Zones, Parallels, ctc.

COFIPARATIVE GPOGRAPEZ, or a system of analogy, connecting new lcssons with the previous ones. Comparative sizes and latitudes aro shown on the margin of each Map, and all countries are measnred in the "framo of Kansas."

TOPICAI GSOGRAPIEY, consisting of questions for review, and testing the student's general and specific knowledge of the snbject, with sugges. tions for Geographical Compositions.

ANCIFNT GFOGRAPEE: A section devoted to this snbject, with Maps, will be appreciated by teachers. It is seldom tanght in our common schools, because it has heretofore required the purchase of a separate book.

GRAPIIC GEOGRAPEIZ, or MAP-Drawing by Allen's "Unit of Measurement" system (now almost universally recognized as withont a rival) is introduced throughout the lessons, and not as an appendix.

CONSTRTCTIVE GFOGRAPEY, or GLOBE-MAKING. With each, book a set of Map Segments is furnished, with which each student may make bio own Globe by following the directions given.

RAIIROAD GEOGRAPEE, with a grand Map illustrating routes of travel in the United States. Also, a "Tour in Europe."

The National Series of Standarl School-Zooks.

MAP DRAWING.

Monteith's Map-Drawing Made Easy.

A ncat little book of ontlines and instructions, giving the "corners of States " in snitable blanks, so that Maps can be drawn by unskillful hands from any atlas; with instructions for written exercises or compositions on geographlcal enbjecte, and Comparative Geography.

Monteith's Manual of Map-Drawing (Allen's System).

The only consistent plan, by which all Maps are drawn on one ecale. By its nse mich time may be aaved, and much interest and accurate knowledge gained.

Monteith's Map-Drawing and Object Lessons.

The last-named treatise, bound with Mr. Montelth's ingenions system for enmmitting ontlines to memory by means of pictures of 11 ming ereatnres and familiar objects. Thus, South America resembles a dog's head; Cuba, a ilzard; Italy, a boot: Frasce, a coffice-pol; Turkey, a turkey, etc., etc.

Monteith's Map-Drawing Scale.

A ruler of wood, graduated to the "Allen fixed nnit of measnrement."

WALL MAPS.

Monteith's Pictorial Chart of Geography.
The original drawing for this beautlful and instruetive chart was greatly admired in the publisher's "exhibit" at the Centennlai Exhibltion of 1876 . It is a picture of the Earth's surface wlth every natural featnre displayed, teaching aleo physical geography, and especially the mutations of water. The ures to whlch mau puts the earth and its treasures and forces, as Agriculture, Mining, Manufacturing, Commerce, and Transportatlon are also graphically portrayed so that the young learner gets a realistic idea of "the world we live in," which weeks of book-study might fail to convey.

Monteith's School Maps, 8 Numbers.

The "School Series" includes the Hemispheres (2 Maps), United States, North America, Sonth America, Europe, Asla, Africa.-Price, $\$ 2.50$ eaeh.
Fach map is 28×34 inches, beantifully colored, has the names all lald down, and is substantialiy monnted on canvas with rollers.

Monteith's Grand Maps, 8 Numbers.

The "Grand Series" Includee the Hemlspheres (1 Map), Unlted States, Sonth America, Europe, Asia, Africa, The World on Mercator's Projectlon, and Physical Map of the World.-Pilce, $\$ 5.00$ each. Size 42×52 inches, names luid down, colored, mounted, \&c.

Monteith's Sunday School Maps,

Incinding a Map of Panl's Travels (\$5.00), one of Anclent Canaan ($\$ 3.00$), and Modern Palestine ($\$ 3.00$), or Palestine and Canaan together ($\$ 5.00$).

MONTEITH'S GEOGRAPHIES

Mave been adopted, by official anthority, for the schools of the following States and Cities-in most cases for exclusive and nniform nee.

alifornia,	Tennessee,	Iows,	Arkansas,	Norti Caroli
Missouri, ALABAMA,	Texas, Vermont,	OREGON.	Flomda, Minnesota.	M18s1881PTP.

Cities,-New York Clty, Brooklyn, Chicago, New Orkeans, Bnfalo, Riehmond, Jersey City, Hartford, Worcester, San Francisco, I,onlaville, Newark, Milwaukee, Charleston, Roehester, Mobile, Syraense. Memplhis, Salt Lake City, Nachvilie, Utlea, Wilmington, Trenton, Norfolls, Norwich Lockport, Dubaqne, Galveston, Portland, Savannah, Indianapolle, Sprlngleid, Wheeling, Toledo, Bridgeport, SL Panl, Vickaburg, \&c.

The National Series of Standard School-Books.

Monteith \& McNally's National Geographies.

CRITICAL OPINIONS.

From R. A. Adaus, Member of Board of Education, Newo Fork.

I have foand, by examination of the Book of Supply of our Board, that eonstderably the largest number of any series now used in our public schools is the National, by Monteith aud McNally.
From Bro. Patrick, Chief Provincial of the Tast Educational Society of the Christur Brethees in the United States.
Having been conviuced for some tiac past that the series of Geographies in wse in our schools were not giving satisfactiou, and came far short of meetiug our most reasonable expectations, I have felt it my imperative duty to examine Into this matter, and see if a remedy could not be found.
Copies of the differeut Geographics published in this country have beeu placed at our command for examination. On account of other pressing duties we have not been able to give as much time to the investigation of all these differeut series as we could have desired; get we have found euough to couvince us that there are many others better than those we are now using; but we cheerfully give our most decided preference, above all others, to the Natioual Series, by Mouteith \& McNally.
Their easy gradation, their thoroughly practical and independent character, their comprehensive completeness as a full and accurate system, the wise discriminatiou shown in the selection of the subject matter, the beautifulaud copious illustratious, the neat cut type, the general execution of the works, aud other $6 x$. cellencies, will commend them to the friends of education everywhere.

From the "Home Monthly," Nashville, Tenn.

Monteith's and McNally's Geograpies.-Geography is so closely connected with Astronomy, History, Ethnology, and Gcology, that it is difficult to define its limits in the construction of a text-book. If the author confines himself strietly to a description of the earth's surface, his book will be dry, meager, and unintelligible to a child. If, on the other hand, he attempts to give iuformation on the cognate sciences, he enters a bouudless field, and may wander too far. It seems to us that the authors of the series before us have hit on the happy medinm between too much and too little. The First Lessons, by applying the system of object-teaching, renders the subject so attractive that a child, just able to read, may become deeply interested in it. The secoud book of the course eularges the view, but still keeps to the maps and simple descriptions. Theu, in the third book, we have Geography combined with History and Astrouomy. A general view of tae solar system is preseuted, so that the pupil may understand the earth's position on the map of the heavens. The first part of the fourth book treats of Physical Geography, and contains a vast amount of knowledge compressed into a small space. It is made bright and attractive by beautiful picturcs and suggestive illustrations, on the principle of object-teaching. The inaps in the secoud part of this volume are remarkably clear, and the map exercises are copious and judreious. In the fifth and last volame of the serics, the whole subjeet is reviewed and systematized. This is strictly a Geography. Its maps are beautifully engraved and clearly printed. The map exercises are full aud comprehensive. In all these books the maps, questions and descriptious are given in the same volume. In most geogriphies there are too many details aud minute descriptions-more than any child out of purgatory ought to be required to learn. The power of memory is overstrained; there is coufusion-no clearly defined idea is formed in the child's mind. But in these books, in brief, pointed descriptions, and constant nse of bright, accurate maps, the whole subject is photographed or the mind.

The National Series of Standard School-Bcow's.

MATHEMATICS.

DAVIES' NATIONAL COURSE.

ARITHMETIC.

i. Davies' Primary Arithmetic,
2. Davies' Intellectual Arithmetic,
3. Davies' Elements of Written Arithmetic,
4. Davies' Practical Arithmetic,
5. Davies' University Arithmetic.

TWO BOOK SERIES.

I. First Book in Arithmetic, Primary and Mental.
2. Complete Arithmetic.

ALGEBRA.

I. Davies' New Elementary Algebra,
2. Davies' University Algebra,
3. Davies' New Bourdon's Algebra.

GEOMETRY.

1. Davies' Elementary Geometry and Trigonometry,
2. Davies' Legendre's Geometry,
3. Davies' Analytical Geometry and Calculus,
4. Davies' Descriptive Geometry,
5. Davies' New Calculus,

MENSURATION.

I. Davies' Practical Mathematics and Mensuration,
2. Davies' Elements of Surveying,
3. Davies' Shades, Shadows, and Perspective,

MATHEMATICAL SCIENCE.

Davies' Grammar of Arithmetic, Davies' Outlines of Mathematical Science, Davies' Nature and Utility of Mathematics, Davies' Metric System, Davies \& Peck's Dictionary of Mathematics,

DAVIES' NATIONAL COURSE of MATHEMATICS،

ITS RECORD.

In claiming for this series the first place among American text-books, of what ever class, the Publishers appeal to the magnificent record which its volumes have earned during the thirty-five years of Dr. Charles Davies' mathematical labors. The unremitting exertions of a life-time have placed the modern series on the same proud eminence among competitors that each of its predecessors has euccessively enjoyed in a course of constantly improved editions, now rounded to their perfect fruition-for it seems 2 lmost that this science is susceptible of no further demonstration.
During the period alluded to, many authors and editors in this department have started into public notice, and by borrowing ideas and processcs original with Dr. Davies, have enjoyed a brief popularity, but are now almost unknown. Many of the series of to-day, bnilt upon a similar basis, and described as " modern books," are destincd to a similar fate; while the most far-seeing eye will find it difficult to fix the time, on the basis of any data afforded by thcir past history, when these hooks will cease to increase and prosper, and fix a still firmer hold on the affection of cvery educated American.

One canse of this unparalleled popularity is found in the fact that the enterprise of the author did not cease with the original completion of his books. Always a practical teacher, he has incorporated in his text-books from time to time the advantages of every improvement in methods of teaching, and every advance in science. During all the years in which he has been laboring, he constantly submitted his own theories and those of others to the practical test of the class-room -approving, rejecting, or modifying them as the experience thus obtained might suggest. In this way he has been ablo to prodnce an almost perfect series of class-books, in which every department of mathematics has received minutc and exhaustive attention.

Upon the death of Dr. Davies, which took place in 1876 ; his work was im mediately taken $n p$ by his former pnpil and mathematical associate of many years, Prof. W. G. Peck, LL.D., of Columbia College. By him the original Series is kept carefully revised and not allowed in any way to fall behind the times.

Davies' Ststem is the acknowledged National Standard for this United States, for the following reasons:-

1st. It is the basis of instruction in the great national schools at West Point and Annapolis.
2 d . It has received the quasi endorsement of the National Congress.
3d. It is exclusively used in the public schools of the National Capital.
4 th. The officials of the Government use it as authority in all cases involving mathematical questions.

5th. Our great soldiers and sailors commanding the national armies and navies were educated in this system. So have becn a majority of eminent scientists in this country. All these refer to "Davies" as anthority.

6th. A larger number of American citizens have received their edncation from this than from any other series.

7th. The series has a larger circulation throughont the whole country than any other, being extensively used in every State in the Union.

Davies' National Course of Mathematics.

TESTIMONIALS.

 From L. Van Bokmelex, State Superintendent Public Instruction, MFaryland. The series of Arithmetles edlted by Prof. Davies, and published by your fimm 2ave been used for many years iu the eehools of several couvties, and tho city of Saltmore, and have been approved by teachers and commistionen.Under the law of 1860, esfabli-hing a uniform system of Free Pnblic Sel:oole these Arithmetles were unanlmonsly adopted by ithe State Board of Education after a careful examination, and are now used in all the Public Schools of Mary hnd.
These facts evidence the high opinlon entertained by the School Authorities of the value of the series theoretically and praetically.

From Horace Webster, president of the College of-New Fork.
The underslgned has examined, with care and thought, feveral volumes of Da. vies' Mathematics, and is of tho opinion thar, as a whole, it is the most complets and best course for Academlc and Collegiate instruetion, with which ho is acquainted.
From Davm N. Cayp, State Superintendent of Common Schools, Connecticut.
I have examined Davles' Series of Arlthmetics with somo care. The language is clear and precise; each prineiple is thoronghly analyzed, and the whole so ar ranged as to facilitate the work of instruction. Maving observed the watisfactlou and saccess with which the different books have beer used ly eminent teachera. it gives me pleasure to eommend them to others.
From J. O. Wusox, Chairman Committes on Text-Books, Washington, D. C.
I consider Davies' Arithmeties decidedly eaperior ro any other series, and in this opinlon I amsustained, I belleve, by the entire Board of Education and Corps of Teachers in this city, where they have been used for several years past.
From Jony L. Campbelx, Professor of Mathematiox, Wabash College, Indiana,
A proper combination of abstract reasoning and practical ilfustration is the chief exceltenee in Prof. Davles' Mathematical worlss. I prefer his Arithmetles, Algebras Geometry and Trigonomeny to all others now in nee, and condlally reconmend them to all who desire the adivancement of sound lamrning.

From Major J. I. Whitcleser. fovernment Inepector of Milltary Schooks.

$13 e$ assured, I regard the works of Yrof. Davles, with which I am acquainted, as hy far the best texi-hooks in print on rue subjects which they treat. 1 fhall certainly encourage their adoption wherever a word from me may be of any avail.
From T. McC. Ballantine, Mof. Huthematics Cumberland Coilege, Fentucky.
'have long taught Prof. Davies' Course of Mathematles, and i conrinue to like their working.

From Joen McLear Bell, B. A., Prin. of Lower Canada Callege.

I have used Daries' Arithmetica! and AIathematleal Series as text-2ocks in the schools under my eharge for the lasciz years. These 1 have found of great enlcacy in exeiting, invigorating, and concentrating the intellectual facalties of the young.
Each treatise serves as an introduction to the next higher, by tho nlmilarlty of its reasonlugs and methods; and the stndent is carried forward, by cacy and gradnal steps, over tho wholo fleld nf mathematical Inquiry, aat tlest, for, in a कhorter time than is usnally occnpied in mastering a single department. I fincere is and heartily recommend them to the sttention of my fellow-teachers in Casade

From D. W. Steele, Prin. Phulekolan Academy, Cold Springe, Taxas.
I have used Daries' Arithmettcs till I know them nearly by beart. A bettce ierles of school-books never were published. I have recommended them unti: they aro now used in all this region of country.

[^33]
PECK'S ARITHMETICS.

By the Prof. of Mathematics at Columbia College, New York.

1. Peck's First Lessons in Numbers,

Embracing all that is nsnally inclnded in what are called Primary and Intellectual Arithmetics; proceeding gradnally from object lessons to abstract numbers; developing Addition and Subtraction simultaneonsly: with other attractive novelties.

2. Peck's Manual of Practical Arithmetic,

An excellent "Brief" eonrse, conveying a sufficient knowledge of Arithmetic for ordinary business parposes. .
It is thoroughly "practical," becanse the anthor believes the Theory cannot be stadied with advantage until the pnpil has acquired a certain facility in combining numbers, which can only be had by practice.

3. Peck's Complete Arithmetic,

The whole subject-theory and practice-presented within very moderate limits. This anthor's most remarkable facnlty of mathematical treatment is eomprehended in three words: System, Conciseness, Lucidity. The directness and simplicity of this work cannot be better expressed than in the words of a correspondent who adopted the book at once, becanse, as he said, it is "free from thst juggling with numbers" practiced by many authors.
From the "Galaxy," New York.

In the "Complete Arithmetic" each part of the snbjeet is logically developed. First ara given the neeessary definitions; second, the explanations of sneh signs (if any) as are nsed; third, the principles on which the operation depends; fonrth, an exemplification of the manner in which the operation is performed, which is so condncted that the reason of the rule which is immediately thereafter dednced is made perfectly plain; after which follow nnmerous graded examples and corresponding practical problems. All the parts taken together are arranged in logical order. The snbject is treated as a whole, and not as if made up of segregated parts. It may seem a simple remark to make that (for example) addition is in principle one and the same everywhere, whether employed npon simple or compound numbers, fractions, etc., the only difference being in the unit involved; bnt the number of persons who nnderstand this practieally, compared to the number who have studied arithmetie, is not very great. The student of the "Complete Arithmetic" cannot fail to nnderstand it. All the principles of the acience are presented within moderate limits. Snperfluity of matter-to supplement defective definitions, to make clear faulty demonstrations and rules expressed either inaccnrately or obscurely, to make provision for a mnltiplieity of cases for whieh no provision is requisite-has been carefully aroided. The deflnitions are plain and concise; the principles are stated clearly and acenrately; the demonstrations are fall and complete; the rules are perspicuous and comprehensive ; the illustrative examples are abnndant and well fitted to familiarize the student with the application of principles to the problems of science and of every-day life.
The Definitions constitnte the powcr of the book. We have netcr seen them excelled for clearness and exactness.- Iowa School Journal

MATHEMATICS-Continued.

PECK'S HIGHER COURSE.

Peck's Manual of Algebra,
Bringing the methods of Bourdon within the range of the Academic Coarse.
Peck's Manual of Geometry,
By a method parely practical, and nnembarrassed by the details which rather confase than simplify science.

Peck's Practical Calculus,

Peck's Analytical Geometry,
Peck's Elementary Mechanics,
Peck's Mechanics, with Calculus,
The briefest treatises on these sabjects now pablished. Adopted by the great Universities; Yale, Harmard, Columbia, Princeton, Cornell, \&c.

ARITHMETICAL EXAMPLES.

Reuck's Examples in Denominate Numbers,
Reuck's Examples in Arithmetic,
These volumes differ from the ordinary arithmetic in their pecullarly practicat character. They are composed mainly of examples, and afford the most severe and thorough discipline for the mind. While a book which should contain a complete treatise of theory and practice would be too cumbersome for every-day uso, tho insufficiency of practical examples has been a source of complaint.

HIGHER MATHEMATICS.

Macnie's Algebraical Equations,
Serving as a complement to the more adranced treatises on Algebra, giving apo. cial attention to the analysis and solution of equations with numerical coemsients.
Church's Elements of Calculus,
Church's Analytical Geometry,
Church's Descriptive Geometry, 2 vols.,
These volumes constitute the "West Point Course" in their several departments.
Courtenay's Elements of Calculus,
A standard work of the very highest grade.
Hackley's Trigonometry,
With applications to narigation and surreying, nautial and practical geometry and geodeny.
she National Series of Standard School-Books.

PENMANSHIP.

Beers' System of Progressive Penmanship. Per dozen

This "ronnd hand" system of Penmanship in twelve nnmbers, commends itself by its simplicity and thoroughness. The first four numbers are primary books. Nos. 5 to 7, advanced books for boys. Nos 8 to 10, advanced books for girls. Nos. 11 and 12, ornamental penmanship. These kooks are printed from steel plates (engraved by McLees), and are nnexcelled in mechanical execution. Large quantities are annually sold.

Beers' Slated Copy Slips, per set

All beginners should practice, for a few weeks, slate exercises, familisrizing them with the form of the letters, the motions of the hand and arm, \&c., \&c. These copy slips, 32 in number, snpply all the copies fonnd in a complete series of writing-books, at a trifling cost.

Payson,Dunton\&Scribner's Copy-B'ks.P.doz.,

The National System of Penmanship, in three distinct series-(1) Common School Series, comprising the first six numbers ; (2) Business Series, Nos. 8, 11, and 12 ; (3) Ladies' Series, Nus. 7, 9, and 10.

Fulton \& Eastman's Chirographic Charts,

To embellish the school room walls, and furnish class exercise in the elements of Penmanship.

Payson's Copy-Book Cover, per hundred
 Protects every page except the one in nse, and furnishes "lines" with prnper slope for the penman, under. Patented.

National Steel Pens, Card with all kinds
Prononnced by competent jndges the perfection of American-made pens, and superior to any foreign article.

SCHOOL SERIES.
School Pen, per gross, - . 80 Academic Pen, do . . 63 Fine Pointed Pen, per gross 70 POPULAR SERIES.
Capitol Pen, per gross, 100 do do pr. box of 2 doz .25 Bnllion Pen (imit. gold) pr. gr. 75 Ladjes' Pen do 63

Stimpson's Scientific Steel Pen, per gross $\$ 150$
One forward and two backward arches, ensuring great strength, wellbalanceal elasticity, evenness of point, and smoothness of execution. One gross in twelve contains a Scientific Gold Pen.
Stimpson's Ink-Retaining Holder, per doz. 150
A simple apparatus, whic.s dees not get ont of order, withholds at a single dip as mnch ink as the pen would otherwise realize from a dozen trips to the inkstand, which it snpplies with moderato and easy flow.

Stimpson's Gold Pen, $\$ 300$; with Ink Retainer 4 be

Stimpson's Penman's Card, 8025

[^34]
The National Series of Standard School-Books.

HISTORY.

Monteith's Youth's History.

A History of the United States for beginners. It is arranged upon the caterhetical plan, with illustrative maps and engravings, review questions, dates in pareathewes (that their stady may be optional with the younger class of learners), and interetick Biographical sketches of all persons who have been prominently ldentified with tie history of our country.

Willard's United States, School and Universitr Editions.

The plan of this standard work is chronologically exhihited in front of the fitlepage; the Maps and Sketches are fonnd neeful assiktants to the memory, and datc. nsnally so dificult to remember, are so systematically arranged as in a great degree to obviate the difficulty. Candor, impartiality, and accuracy, are the distinguiwhiag featnres of the narrative portion.

Willard's Universal History.

The most valuahle features of the "Unfted States" are reprodnced in this. The pecnlisrities of the work are its great conclseness and the promineace given to the chronological order of events. The margin marks each enccessive era with great distinctuess, so that the pupil retains unt only the event hut fis time, and thus fixes the order of h'story firmly and nsefnlly in his mind. Mrs. Willard'a bonka are corstantly revised, and at all times written up to emhrace important historical evems of recent date.

Lancaster's English History,

By the Master of the Stonghton Grammar School, Boston. The most practical re the "hrief books." Though short, it is not n hare and uninteresting ontline, ha: contains enough of explanation and detail to make intellizible the cause and effer ii events. Their relations to the history and development of the Americau people io made apecially prominent.
Willis' Historical Reader,
Being Collier's Great Events of Mistory adapted to American schools. This rare epitome of general history, remarkable for its charming etyle and jurlicions selection of events on which the destinies of nations have turned, has been skillfnlly manipulated by Prof. Willis, with as few changes as would brino the T'nited states into its proper position in the historical perspective. As reader or text-book it has few equals and no snperiors.

Berard's History of England,

By an anthoress well known for the success of her History of the Unitel States. The sociai life of the English people is felicitonely interwoven, as in fact, with the civil and military transactions of the realm.

Ricord's History of Rome

Possesses the charm of an attractive romance. The Fables with which this history abounds are introduced in such a way as not to deceive the inexperienced, while adding materialiy to the value of the work as a reliable inder to the character and institutions, as well as the history of the Roman people.

Hanna's Bible History.

The only compendinm of Bibic narrative which affords a connected and chronological view of the important events there recorded, divested of all superfluous detali. Summary of History; American, French and English.
A well-proportioned ontline of leading events, condensing the substance of the more extensive texthook in common nse into a serics of statements $=0$ brief, that every word may he committed to memory, and yet so comprehensive that it presents an accurate though general view of the whole continnous life of natlons.

Marsh's Ecclesiastical History.

Affording the Ilistory of the Church in all ages, with acconnts of the pacan world during Biblical periods, and the character, rise, and progress of all Religions, as well as the varions sects of the worshipers of Christ. The work is entirely nou-sectarian, though sirictly catholic. A separate volume contains carefully prepared Qtessiens for class ase.

The National Series of Standarl School-Liooss.

IIISTORY-Continued.

BARNES' ONE-TERM HISTORY.

A Brief History of the United States,

This is probably the most origival school-book published for many years, in any department. A few of its claims are the following:

1. Brevity.-The text is complete for Grammar School or intermenlate classes, in 29012 mo pages, large type. It may readily be completed, if desired, in one term of study.
2. Compreheusiveness,-Though so brief, this book contains the pith of all the wearving contents of the larger manuals, and a great deal more than the memory usually retains from the latter.
3. Interest has been a prime consideration, Small books have heretofore been bare, full of dry statistics, nnattractive. This one is charmingly written, replete with anecdote, and brilliant with illustration.
4. Proportion of Events.-It is remarkable for the discrimination with which the different portions of our history are presented according to their importance. Thus the older works being already large books when the civil war took place, give it less space than that accorded to the Revolution.
5. Arrangement.-In six epochs, entitled respectively, Discovery and Settlement, the Colonies, the Revolution, Growth of States, the Civil War, and Current Events.
6. Catch Worcs.-Each paragraph is preceded by its leading thought in prominent type, stending in the student's mind for the whole paragraph.
7. Koy Notes.-Analogous with this is the idea of grouping battles, etc. about some central event, which relieves the sameness so common in such de. scriptions, and renders each distinct by some striking peculiarity of its own.
8. Foot Notes.-These are crowded with interesting matter that is not strictly a part of history proper. They may be learned or not, at pleasure. They are certain in any event to be read.
9. Biographies of all the leading characters are given in full in foot-notes.
10. Maps.-Elegant and distinct Maps from engravings on copper-plate, and beautifully colored, precede each epoch, and contain all the places named.
11. Qiestions are at the back of the book, to compcl a morc independent use of the text. Both text and questions are so worded that the pupil must give in. telligent answers n HIs OwN words. "Yes" and "No "will not do.
12. Fistorical Recreations.-These are additional questions to test the stndent's knowiedge, in review, as: "What trees are celebrated in our history 9 " "When did a fog save our army?" "What Piresidents died in ofice ε " "When was the Mississippi our western boundary?" "Who said, 'I would rather be right than President?'" etc.
13. The Illustrations, about seventy in number, are the work of onr best artists and engravers, produced at great expense. They are vivid and interesting, and mostly upon subjects never before illustrated in a school-book.
14. Dates.-Only the leading dates are given in the text, and these are so associated as to assist the memory, but at the head of each page is the datc of the event first mentioned, and at the rlose of each epoch a summary of events and dates.
15. Tho Philosophy of History is stadiously exhibited-the causes and effects of events bcing distinctly traced and their interconnection shown.
16. Impartiality. - All rectional, partisan, or denominational views are avoided. Facts are stated after a careftl comparison of all authoritics withous the least prejudice or faror.
17. Indez.-A verbal Index at the close of the book perfects it as a work of reference.
It will be observed that the above are all particulars in which School Mistories have been signally defective, or altogether wanting. Many other clains to favo: it shares in common with its prcdeceseore.

BARNES' ONE-TERM HISTORY --Continued.

From Prof. Wm. F. Allims, State Untr. of Wisconatr.

I think the anthor of the new "Bricf llistory of the United Statce" has been very succcssful in combining brevity with sufficient fullness and interest. particularly, he has avoided the excessive number of names and dates that most histories contain. Two features that I like rery much are the anecdotes at the foot of the page and the "Historicul Recreations" in the Appendix. The latter, I think, is quite a new feature, and the other is eery well executed.

From S. G. Wright, Aseist.-Supt. Pub. Inst., Kansas.

It is with extreme pleasure we sabmit our recommendation of the "Briel History of the United States." It meets the needs of yonng and older children, combining concision with perspicuity, and if "brevity is the soul of wit," thls "Brief $13 j{ }^{\circ}$ tory " contains not ouly that well-chosen ingredient, but wisdom sufficient to en lighten those stadents who are wearily longing for a "new departare" from certain oli and ninteresting presentations of fossilized writere. We congratulate a pro gressive public apon a progressive book.

From Inn. Newton Bateman. Supt, Pub. Inst., IWinots.

Barnes' One-Term History of the United States is an exceedingly attractive and epirited little book. Its claim to several new and valnable featnres seems well fonnded. Under the form of six well-dcfined Epochs, the Ilistory of the United States is traced tersely. yet pithily, from the earliest times to the present day. A good map precedes each epoch, whereby the history and geograpliy of the period nay be studied together, as they always should be. The syllabus of each paragraph is made to stand in such bold relief, by the use of large, heavy type, as to be of nuth mnemonic value to the student. The book is written in a sprightly and piquant style, the interest never flagging from beginning to end-a rare and difficult achievement in works of thls kind.

From the "Chicago Schoolmaster" (Editorial).
A thorough examination of Barnes' Brief IIstory of the United States brings the examiner to the conciusion that it is a anperior book in almost every reapect. The book is neat in form, and of good material. The type is clear, larye, and distinct. The ficts and dates are correct. The arrangement of topics is jnst the thing needed In a history text-book. By this arrangement the papil can see at once what he is expected to do. The topics are well selected, embracing the leading ideas or principal evente of American history. . The book as a whole is much vuperior to any I have examined. So much do I think this, that I have ordered it for my class, and shall use it in my school. (Signed) B.W. BAKER.

A Brief History of France,

By the anthor of the "Brief United States," with all the attractive features of thas popular work (which see), and new ones of its own.
It is believed that the hlstory of France has never before been presented in snch brief compass, aud this is effected without sacrificing one particie of interest. The book reads like a romance, and, while drawiug the findent by an irresistible fascination to his task, impresses the great ontlines indelibly npon the memory.

Gilman's First Steps in General History,

A " suggestive outline" of rare compactpess. Each conntry is treated by itself, and the United States receive special attention. Frequent Maps, contemporary events in Tables, References to Standard Works for fuller details, and a minnte Index constitute the "Illustrative Apparatus." From no other work that we know of can so snccinct a view of the worid's history be obtained. Considering the neceso sary limitation of space, the style is snrprisingly vivid, aud at times even ornate. In all respects a charming, thongh not the less practical, text-book.

Gilman's "Seven Historic Ages,"

This book is written in the style nsed by a father talking with his children on the progress of history. As one Are after another is taken IDP, the anthor brings before the young reader the prominent men and characteristic events by which it is to bo remembered. The object is to stimulate the pupil in school or the child at home to atady history, to think of it as a lively picture of the doings of men, and not as a dead list of uninteresting dates.

Baker's Brief History of Texas,

On the plan of "Barnes' Brief Histories," with Constitution of the State, for thhools.

DRAWING.

Chapman's American Drawing Book,

The standard American text-book and authority in all branches of art. A comp plation of art principles. A manual for the amateur, and basis of study for the professional artist. Adapted for schools and private instruction.
Contents. - "Any one who can Learn to Write can Learn to Draw."-Primary Instruction in Drawing.-Rudiments of Drawing the Hnman Head.- Rindiments in Drawing the Human Figure. - Rudiments of Drawing. - The Elements of lieometry:-Perspective.-Of Studying and Sketching from Nature.-Of Painting.-Eiching and Engraving.-Of Modeling.-Of Composition -Advice to the American Art-Student

The work is of course magnificently illustrated with all the original designs.

Chapman's Elementary Drawing Book,

A Progressive Course of Practical Exercises, or a text-book for the training of the eye and hand. It contains the elements from the larger work, and a copy shonld be in the hands of every papil; while a copy of the "American Drawing Book." named above, should be at hand for reference by the class.

The Little Artist's Portfolio,

25 Drawing Cards (progressive patterns), 25 Blanks, and a fine Artist's Pencil, all in one neat envelope.

Clark's Elements of Drawing,

A complete course in this graceful art, from the first rudiments of ontline to the finished sketches of landscape and scenery.

Fowle's Linear and Perspective Drawing,

For the cultivation of the eye and hand, with copions illustrations and direo ticns for the guidance of the unskilled teacher.

Monk's Drawing Books-Six Numbers, per set,

Hacu book contains eleven large patterns, with opposing blanks. No. 1. Elemen. tary Studies. No. 2. Stndies of Foliage. No. 3. Landscapes. No. 4. Animals, L No. 5. Animals, IL No. 6. Marine Views, etc.

Allen's Map-Drawing,
 Scale,

This method introduces a new era in Map-Drawing, for the following reasons:1. It is a system. This is its greatest merit.-2. It is easily understood and taught. -3. The eje is trained to exact measurement by the use of a scale.-4. By no special effort of the memory, distance and comparative size are fixed in the mind.5. It discards neeless constrnction of lines.-6. It can be tanght by any teacher, even though there may have been no previons practice in Map-Drawing.-7. Any pupil old enough to study Geography can learn by this System, in a short time, to draw accurate maps.-8. The System is not the result of theory, but comes dircetly from the school-room. It has been thoronghly and successfully tested there, with all grades of prpils.-9. It is economical, as it requires no mapping plates. It gives the pnpil the ability of rapidly drawing accurate maps.

Ripley's Map-Drawing,

Based on the Circle. One of the most efficient aids to the acquirement of a knowledge of Geography is the practice of map-drawing. It is neeftl for the same reason that the best exercise in orthography is the voriting of difficult words. Sight comes to the aid of hearing, and a double impression is prodnced npon the memory. Knowledge becomes less mechanical and more intnitive. The stndent Who has sketched the ontlines of a country, and dotted the important places, is little likely to forget either. The impression produced may be compared to that of a sraviller who has beeu over the ground, while more con'prehensive and accirate in Retal.

BOOK-KEEPING.

Folsom's Logical Book-keeping, Folsom's Blanks to Book-keeping,

This treatise embraces the interesting and important discoverica ot Prof. Folsom (of the Albany "Bryant \& Stratton Coliege"), the partial ennaciation of which in lectures and othernise has attracted so much attention in circles interested in commercial education.

After stndying bnsiness phenomena for many ycars, he has arrived at the positive lawa and principles that udderiie the whole eubject of Accounts; finds that the sclence is based in Vaue as a generic term. that value divides into two classes with variet -pecies; that all the exchanges of values are redncible to uine cqnations; and that all the results of all these exchanges are fimited to thirteen in number.

As acconnts have been nniversally tanght hitherto, without setting out from a radical analyeis or defintion of valnes, the scleuce has been kept in great obscnrity, and been made as dificult to impart as to acquire. On the new theory, however, these obstacles are chlefly removed. In reading over the first part of it, in which the goverulng laws and principles are discussed, a person with ordnary injelligence will obtain a fair conception of the double entry process of geconnts. But when he comes to study thoroughly these laws and prlnclples as there enuncisted, and works ont the examples and memoranda which elucidate the thirleen results of business, the student will neither fail in readily acqniring the eclence as It id, no: In becoming abie intelligently to apply it in the interpretation of business.

Smith \& Martin's Book-keeping, Smith \& Martin's Blanks,

This work is by a practical teacher and a practical book-keeper. It is of a thoroughiy popular class, and will be weicomed by every one who loves to see theory and practice combined in au easy, concise, and methodical form.

The Single Entry portion is well acapted to snpply a want felt in nearly all other treatises, which seem to be prepared malnly for the nse of wholesale merchants, leaving retailers, mechanles, farmers, etc., who transact the greater portion of the bnsiness of the conntry, wl:hout a guide. The work is also commended, on this account, for general use in Young Ladies' Seminaries, where a thorough grounding in the simpier form of accounts will be invaluable to the future hourekeepers of the nation.

The treatise on Donble Entry Book-keeping comblnes ail the advantages of the most recent methods. With the ntmost eimplicity of application, thas affording the pnpil ali the advantages of actnal experience in the counting-honse, and giving a clear comprehension of the entire subject throngh a jndicions course of mercantile transactions.

The shape of the book is snch that the transactions can be presented as in actual practice: and the simpllifed form of Blanks three in number-adds greatly to the eare cxperienced in acquiriag the seience.

The . Vationat serves of Standam iesool-Boots.

NATURAL SCIENCE.

FAMILIAR SCIENCE.

Norton \& Porter's First Book of Science,

By eminen: Profesenrs of Tale College. Contains the pribciples of Naturd Philosonht, Astromomy, Chemistiry, Physiologt, and Geologs. Arranged on the Latechetical plan for primary classes and beginners.

Chambers' Treasury of Knowledge,

Prosressive lessons apon-firkh common shings which lie most immediately kround us, and first attract the attention of the roung mind; exomd. common objects from the Mineral, Animal, and Vegetable kingdoms, manafactared articles, and miscellaneons substances; thind, a systematic view of Nsiare under the rariou sciences. May be msed as a Roader or Text-book.

NATURAL PHILOSOPHY.

Norton's First Book in Natural Philosophy,
By Prof. Nostox, of Yale College. Designed for beginners. Profasels illastratea and arranged on the Catechetical pian.

Peck's Ganot's Course of Nat. Philosophy,

The standard text-book of Framee, Americanized and popularized br Prof Pack, of Colmmbis Callege. The most magnificent Eystem of illasiation ever adopted in sn American scboch-hook is here found. For intermediste classes.

Peck's Elements of Mechanics,

A suitable introduction to Bartlett's hicher treatises on Mechanical Philosonitr. and adequate in iteolf for a complete academical course.

Bartlett's stIMEITC, ATD ATHYMC, Mechanics, Bartlett's Acoustics and Optics,

A srstem of Collegiste Phillosopbs, by Prof Babtlemt, of Test Poict wimitary scademy.

Steele's 14 Weeks Course in Philos. (see p. 34)
 Steele's Philosophical Apparatus,

Adequate to performing the experiments in the ordinary tert-books. The artalee will be sold sepsratels. if desired. Soe special circular for details.

GEOLOGY.

Page's Elements of Geology,

A volume of Chambers' Educstional Cocrse. Fractical, simple, asd eminentif calcoluted to make the strady interesting.

Emmons' Manual of Geology,

The first Geologist of the country has here prodaced a work worthy of bis repa Estion.

Steele's 14 Weeks Course (see p. 84)
 Steele's Geological Cabinet,

Coutaining 125 carrefulty selected specimens. In four perts. Sold sepecztaly, $\begin{gathered}\text { i }\end{gathered}$ tesired Sep circelar for detais.

Peck's Ganot's Popular Physics.

ت ESTIMOMIALS.

From Penf. Alonzo Courra, Cornell Colleje, Touca.
I am pleased with it I have decided to introduce it as a text-book
From II. F. Jorrsson, President Mullson College, Sheron, Mhs
I am pleased with Peck'u Ganot, and think it a magnificent book.
From Prof. Edwazd Brooks, Pennoyleania State Siormal Sshock.
So eminent are its merits, that it will be fotroduced as the text-book upcr ee mentary physics in this institution.

From II. II. Lockwood, Professor Natural Philooophy U. S. Nasal Aeadeny.
I am so pleased with it that I will prohably add it to a course of lectares given is the midshipmen of this school on physics.

From Geo. S. Macsie, Profesoor Watural Eratory Triversily of Waikeille, Tenn,

I bave decided on the introduction of Peck's Cuanot's Philosophy, as I am eatio fied that it is the beat book for the purposes of my pupils that I hare seek. cons bining simplicity of explanation with elegance of illusuration.

From W. S. McRae, Superintendent Teacy Public Schoots, Indiana,
Having carefully examined a number of text-books on natnral philomophy, I de not hesitate to express my decided opinion in favor of Peck's Ganot. The matter. style, and illustration eminently adapt the work to the popular wants.
From Rev. Samuel McEnnsey, D.D., Pres't Austin College, Huniscille, Texas.
It gives me pleasure to commend it to teachers. I have tanght fome classes with It as our text, and mast eay, for simplicity of style and clearness of illustration, 1 have found nothing as yet fablished of equal value to the teacher and pupil.

Fram C. F. Spear, Principal Maplezoood Institute, Pitterteld, Mass.

I am much pleased with its ample illustrations by plates, and ita clearness and simplicity of statement. It covers the ground nsuslly gone over by our higher clasies, and contains many freeh illustrations from life or daily occurrencer, wed new applications of scientific principles to such.

From J. A BavField, Superintendent Marshall Public Schools, Michiga.
I have used Peck's Ganot since 1S8, and with incressing pleasure and esi.f s:tion each term. I consider it superior to any other work on physics in its a iaprstion to our bigh schools and academies. Its inustrations are superb- beth: than three times their number of pages of ine print
From A. Scguyler, Prof. of Mathematics in Balduin Cniversily, Berea, stio.
After a careful exsmination of Peck's Ganot's Natural Philosophy, and ar ectual test of it merita as a text-book, I can heartily recommend it as admirably lapted to meet the wants of the grade of strdents for which it is intended. Its diagrame and illustrations are unriraled. We use is in the Baldwin University.

From D. C. Tan Normax, Principal Fan Norman Institute, New York.
The Natural Philosophy of M. Ganot, edited by Prof. Peck, is, in my opinion, the best work of its kind, for the use intended, ever publizhed in tile country. Whether regarded in relation to the natural order of the topica, the precision and clearness of its deflitions, or the fullness and beauty of its illusirations, it is cer. tainly, I think, an adrance.
27. For many similar testimonials, nee current numbers of the Exsinted Es contional Bulletin.

The National Series of Standard School-Books.

NATURAL SCIENCE-Continued.

CHEMISTRY.

Porter's First Book of Chemistry,
Porter's Principles of Chemistry,
The above are widely knowu as the productions of one of the most eminent zcientific men of America. The extreme simplicity in the method of presenting the science, while exhanstively treated, has excited universal commendation.

Darby's Text-Book of Chemistry,

Purely a Chemistry, divesting the subject of matters comparatively foreign to it (such as heat, light, electricity, etc.), but usually allowed to engross too much attertion in ordinary school-books.

Gregory's Chemistry, (Organic and Inorganic, each)

The science exhanstively treated. For colleges and medical studeuts.
Steele's Fourteen Weeks Course,
A successful effort to reduce the study to the limits of a single term. (See page 34.)
Steele's Chemical Apparatus,
Adequate to the performance of all the important experiments.
BOTANY.

Thinker's First Lessons in Botany,

For children. The technical terms are largely dispensed with in favor of an easy and familiar style adapted to the emallest learner.

Wood's Object-Lessons in Botany,
 Wood's American Botanist and Florist,
 Wood's New Class-Book of Botany,

The standard text-books of the United States in this department. In style they are simple, popular, and lively; in arrangement, easy and natural; in description, graphic and strictly exact. The Tables for Analysis are reduced to a perfect system. More are annually sold than of all others combined.
Wood's Plant Record,
A simple form of Blanks for recording observations in the feld.
Wood's Botanical Apparatus,
A portable Trunk, containing Drying Press, Knife, Trowel, Microscope, and Tweezers, and a copy of Wood's Plant Record-composing a complete outfit for the collector.

Willis's Flora of New Jersey,

"Catalogus Plantarum in Noca Ccesarea repertarum." This remarkable fiora is of great interest to all botanists, and the Jersey Pines have been termed "the Mecca to which every young botanist hopes some day to make a pilgrimage." This work is indispensable to those botanizing on the ground, and is the most useful book of reference ever pnblished for collectors in all parts of the country. It contains also a Botanical Directory, with addresses of living American botanists.

Young's Familiar Lessons,

Combining simplicity of diction with some degree of technical and scientinc knowledge for intermediate classes. Specially adapted for Texas and the Southwest.
Darby's Southern Botany,
Embracing general Structural and Physiological Botany, with vegetable products, and descriptions of Southern plants, and a complete Flora of the Southern States.

WOOD'S BOTANIES.

TESTIMONIALS.

From Prof. Rictrard Owen, University of Indiana.

I am well pleased with the evidence of philosophical method exhibited in tho general arrangement, as well as with the ciearuess of the explanations, the ready intelligibility of the analytical tables, and the illnetrative aid furnlshed by the numerous and excellent wood-cuts. I design nsing the work as a text-book with my next class.

From Pren. B. R. Anderson, Columbus Union School, Wiacomain.
I have examined several works with a view to recommending some good textbwok on Botany, but I lay them all aside for "Wond's Botanist and Florint." The arrangement of the book is in my opinion excellent, its style fasclnating and antractive, its treatment of the various departments of the eclence is thorough, and hast, bnt far from unimportant, I like the topical form of the questions 10 each chapter. It seems to embrace the entire eclence. In fact, I consider it a complete, attractire. and exhaustive work.

From M. A. Manswall, New Haven Tigh School, Conn.

It has all the excellencies of the well-known Class-Book of Botany by the same author in a smaller book. By a judiclous system of condenfation, the size of the Flora is reduced one-half, while no species are omitted, and many new ones are added. The descriptions of species are very brief, yet sufficient to fdentlfy the plant, and, when taken in connectlon with the generic description, form a complete description of the plant. The book as a whole will suit the wants of classes better than anything I have jet seen. The adoption of the Botanist and Florist wonld not reqnire the exclusion of the Class-Book of Botany, as they are so arranged thal both night be used by the same class.
Fronn Prof. G. M. Perkins, Unicersily of Termont and State Agricultural College.
I can traly say that the more I examine Wood's Class-1Book, the better pleased I
am with it. In its illustrations, especially of particulare nol easily obeerred by the
student, and the clearness and compactness of its statements, as well as in the ter-
ritory its ilora embraces, it appears to me to surpass any other work I know of.
The whole science, fo far as it can be taught in a college course, is well presented
and rendered nnasually easy of comprehension. The mode of anslysis is excellent,
avoiding as it does to a great extent those microscople characters whlch puzzle the
beginner, and nsing those that are obvions as far as possible. I regard the work as
a most admirable one, and shall adopt it as a text-book another jear.

AGRICULTURE.

Pendleton's Scientific Agriculture,

A text-book for collegen and schools; treats of the following topics: Anatomy and Physiology of Plants: Agricaltural Meteorology; Soils as related to Physice: Chemistry of the Atmosphere; of Plants; of Solls: Fertillzers and Nataral Manures; Animal Nutrition, etc. By E. M. Pendueton, M. D., Prof, of Agriculture in the University of Georgia.

From President A. D. Wirte, Cornell Cuiversity.

Dear Sir: I hare examined your "Text-book of Agricnltaral Science," and it ceems to me excellent in view of the parpose it is intended to serve. Many of yonr chapters interested me especiahy, and all parts of the work geem to comblue ectentific instruction with practical fiformation in proportions dictated by sound common sense.

From President Robinson, of Broun Eniamaity.

It is sclentific in method as well as in matter, comprehensive in plan, natural and logical in order, compact and lucid in its statements, and mant be nseffl both as n. text-book in Agricultural colleges, and as a band-book for intelligent planters and carmers.

NATURAL SCIENCE-Continued.

PHYSIOLOGY.

Javis' Elements ci Physiology,
Javis' Physinlogy and Laws of Health,
The only books extant which approach this subject with a proper vierr of the true object of teaching Physiology in schools, viz., that scholars may know how to take care of their own health. In bold contrast with the abstract Anatomies, which chiddren learn as they would Greek or Latin (and forget as soen), to discipline the Finind, are these text-books, using the science as a secondary consideration, and only so far as is necessary for the compreheusion of the laurs of health.
Hamilton's Vegetable and Animal Physiology,
The two branches of the science combined in onc volume lead the student to a proper comprehension of the Analogies of Nature.
Steele's Fourteen Weeks Course,
In the popular style, avoiding technical and parely scientific formulas. It contains beantiful and vivid illustrations, some of them colored, and a blackhoard analysis of the skeleton. The sections on diseases and accidents, and their prompt home treatment, give the book great practical value (see p. 34).

ASTRONOMY.

Willard's School Astronomy,

By means of clear and attractive illustrations, addressing the eve in many cases by analogies, careful definitions of all necessary technical terms, a carefnl avoidance of verbiage and unimportant matter, particular attention to aualy*is, and a general adoption of the simplest methods. Mrs. Willard has made the best and most attractive elementary Astronomy extant.
McIntyre's Astronomy and the Globes,
A complete treatise for intermediate classes. Highly approved.

Bartlett's Spherical Astronomy,

The West Point course, for adranced classes, with applications to the current wants of Navigation, Qeography, and Chronology.
Steele's Fourteen Weeks Course,
Reduced to a single term, and better adapted to school nse than auy work heretofore published. Not written for the information of scientific men, bnt for the inspiration of yonth, the pages are not burdened with a multitude of fignres which no memory could possibly retain. The whole subject is presented in a clear and concise form. (See p. 34)

NATURAL HISTORY.

Carll's Child's Book of Natural History,
Iilustrating the Animal, Vegetable, and Mineral Kingdoms, with applicatien to the Arts. For begiuners. Beautifully and copioasly illustrated.

ZOOLOGY.

Chambers' Elements of Zoology,

A complete and comprehensire system of Zoology, adapted for academic instruction, presenting a systematic view of the Animul Kingdom as a portion of externa Nature.

Steele's Fourteen Weeks Course,

Notable for its snperb and eutertaining illustrations, which include every animal named; blackboard tables of classification and tahular reriew of the whole animal kiugdom; iuteresting and characteristic facts and anecdotes; directions for cr.llecting and preserving specimens, etc., etc. (See p. 31.)

Jarvis' Physiology and Laws of Health.

TESTIMONIALS.

From Sametz B. Mclane, Superintendeni Public Sehoole, Keokuk, Ioura.
I an glad to sce a really good text-book on this much neglected branch. This in dear, concise, aocurate, and emluently adapled to the class-room.
From WilelaM F. Wrers, Principal of Academy, West Cheoder, Penimejlvania. A thorough examination has satisfed me of its superior clalms as a text-hook to the attentlon of teacher and tanght. I shall introduce it at once.

Prom II. R. Sanforn, Principal of East Gevesee Conference Seminary, N. Y.
"Jarvis' Physlology" is recelved, and fully met our expectations, Wh Immediately ${ }^{n}$ dopted It.
From Isano T. Goodnow, State Superintendent of Kansas-published in connection teith the "Schuol Law."
"Jarvis" Physlology," a common-sense, prnctical work, with Just enou, wh of anatomy to understand the physlological portlone The last slx pages, on Man's Reapon sibility for hls own bealth, are worth the price of the book.

From D. W. Stevens, Superintendent Public Schoota, Fall River, Mass.
I have examined Jarvis' "Physiology and Laws of Health," which you had the kludness to send to me a short tlme ago. In my judgment it is far the best work of the kiad within my knowledge. It has been adopted as a text-book ln our puble schools.

From IIeney G. Denny, Chairman Book Committee, Boston, Mans.
The very excellent "Physlology" of D:. Jarvis I bad Introduced Into our IIIgh School, where the study had been temporarily dropped, belleving it to be hy far the hest work of the kInd that had come under my observation; Indeed, the relntroductlon of the study was delayed for sonie months, because Dr. Jarvis' book could not bo had, and we were unwilling to take any other.

From Prof. A. P. Peabodt, D.D., LL.D., Harvard Un'rersity.

- I havo been In the hahlt of examining school-books with great care, and 1 hesiltate not to say that, of all the text-books on Physiology which have been given to the publle, Dr. Jarvis' deserves the first place on tho score of accuracy, thoroughness method, simplicity of statement, and constant reference to toples of practical interest aud utility.

From James N. Townsexd, Superintendent Public Schoole, Hudsom, N. Y.
Every human belng is appolnted to tako charge of hls own lody: and of all books -ritten upon this suhject, I know of none which will so well prepare ono to do this as "Jarvis' Physiology" - that is, in so sinall a compase of nuatter. It considers the pure, slmple laws of health paramount to sclence: and though tho work is thoroughly sclentific, it is divested of ail cumbrons teclinlcallites, and presents the subject of physical life in a manner and style really charmlng. It is unquestlonably the best textbook on physiology I have ever seen. It is giving great satisfaction in the seboole of this city, where it bas been adopted as the standard.

From I. J. Sanford, M.D., Prof. Anatomy and Physiology in Yale College
Books on human physlology, designed for the use of schools, are more generally a failure perbaps than are school-books on most other subjecta.
The great want In this department is met, we thiuk, in the well-written treatise of Dr. Jarvia, entitied "Physiolugy and Laws of Health," ". The work is not 100 detailed nor too expansive in any department, and is clear and conclse ln all. It is not burdened with an excess of anatomlcal description, nor rendered dlscuraive hy many zoological references. Anatomical statements are made to the extent of quallfying the student to attend, understandlngly, to an expositlon of those functional pro cerses which, collecllvely, make up health; this the laws of health are enunctated, and many suggestions are given which, if heedod, will tend to its preservation.

[^35]
The National Series of Standard School-Zook's.

NATURAL SCIENCE.

"FOURTEEN WEEKS" IN EACH BRANCH, By J. DORMAN STEELE, A. M.

Steele's 14 Weeks Course in Chemistry (New Ed.)
Steele's 14 Weeks Course in Astronomy
Steele's 14 Weeks Course in Philosophy
Steele's 14 Weeks Course in Geology
Steele's 14 Weeks Course in Physiology
Steele's 14 Weeks Course in Zoology
Our Text-Books in these studies arc, as a general thing, doll and uninteresting. They contain from 400 to 600 pages of dry facts and unconnected details. They abound in that which the student cannot learn, much less remember. The papil commences the study, is confused by the fine print and coarse print, and neither knowing exactly what to learn nor what to hasten over, is crowded through the single term generally assigncd to each branch, and frequently comes to the close without a defnite and exact idea of a single scientific principle.

Steele's Fourteen Wecks Courses contain only that which every well-informed person should know, whilc all that which concerns only the professional scientist is omitted. The language is clear, simple, and interesting, and the illustrations bring the subject within the range of home life and dally experience. They give such of the general principles and the prominent facts as a pupil can make familiar as household words within a single term. The type is large and open; there is no fine print to annoy; the cnts are copies of genuine experiments or natural phenomena, and are of fine execntion.

In fine, by a eystem of condensation peculiarly his own, the anthor reduces each branch to the limits of a single term of stndy, while sacrificing nothing that is essential, and nothing that is usually retained from the study of the larger mannals in common use. Thns the student has rare opportunity to coonomize his time, or rather to employ that which he has to the best advantage.

A notable feature is the author's charming "stylc," fortified by an enthusiasm over his subject in which the stadent will not fail to partake. Believing that Natural Science is full of fascination, he has moulded it into a form that attracta rhe attention and kindles the enthusiasm of the pnpil.

The recent editions contain the author's "Practical Questions" on a plan never before attempted in scientific text-books. These are questions as to the nature and cause of common phenomena, and are not directly answered in the text, the design being to test and promote an intelligent use of the student's knowledge of the foregoing principles.

Steele's General Key to his Works.

This work is mainly composed of Answers to the Practical Questions and Solu tions of the Problems in the author's celcbrated "Fourteen Weeks Conrses" is the several aciences, with many kints to teachers, minor Tables, \&c. "Should be on every teacher's desk.

Steele's 14 Weeks in each Science.

「ESTIMONIALS.

From L. A. Bikle, President N. C. Callege. I have not been disappointed. Shall take pleasure in Introducing thls serion

From J. F. Cox, Prest. Southern Fimale Coliege, Ga. I am much pleased with these bouke, and expect to intruluce them.

From J. R. Brasuax, Prin. Brownscille Female Callege, Tonn. They are capital litule books, and are now in use in our institution.

From W. II. Goodale, Professor Readrdile Seminary, La. We are using your 14 Weeks Course, and are much pleased with them.

From W. A. Boles, Supt. Shelbycille Graded School, Ind. They are as entertaining as a story book, and much more improving to the mind

> From S. A. Sxow, Princtpal of IIigh School, Uxbridge, Mass.

Steeie's 11 Weeks Courses in the Sciences are a perfect success.
From Joun W. Docguty, Nencourg Free Acaderny, N. Y.
T was prepared to find Prof. Steele's Course both attractive and instractive. My bighest expectations have been f.lly realized.

From J. S. Blackwell, Prest. Ghent College, Ǩy.

Prof. Steele's unexampled snccess in providing for the wants of academlc classes, has led me to look forward with hlgle anticlpatious to hls forthcoming lssue.

From J. F. Coon, Prest. La Grange College, MYo.

I am pleased with the neatness of these books and the delightful diction. I bave betn teaching for years, and have uever seen a iovelier little volume than the As tronomy.

From M. W. Smitr, Prin. of ITigh School, Morrison, $11 l$.
They seem to me to be admlrabiy adapted to the wants of a publle school, containing, as they do, a snfficiently comprehensive arrangement of elementary princlples to excite a healithy thirst for a more thorough knowledge of those sciences.

From J. D. Bartley, Prin. of High School, Concord, N. II.
They are just euch books as I have iooked for, viz., those of intereating style, not cumbersome and filled up with thlngs to be omitted by the pupil, and yet ruffciently full of facts for the purpose of most scholars \ln these sciences \ln our hlgh schools; there is nothing bnt what a papil of average ability can thoroughiy master.

From Alonzo Nonton Lewis, Principal of Parker Academy, Conn.
I consider Steele's Fourteen Weeks Conrses in Phllosophy, Chemistry, \&c., the best echoci-books that have been lisuaed in thls conntry.
As an introduction to the varions branches of which they treat, and especially for that numerous class of paplis who have not the time for a more extended course, I consider them incaluable.

From Edwand Brooks, Prin. State Normal School, Millerscille, Pa.
At the meeting of Normal School Principals, I presented the following resolny tion, which was unanimously adoptert: "Riceolred, That Steele's if Weeks Courses in Natural Philosophy and Astronomy, or an amount equivalent to what is contained \ln them, be adopted for use In the State Normal Schools of Pennsylvania." The works themelves will be adopted by at least three of the schools, and, I presnme, by them all.

L. ITERATURE.

Gilman's First Steps in English Literature,

The character and plan of this exquisite little text-book may be best underswod from an analysis of its contents:
Introduction. Chapter I, Historical; II, Definition of Terms; III, Languages of Europe, with Charl.
Period of Immature Evglish, with Chart. Chapter IV, Original English; V, Broken English; VI, Dead English: VII, Reviving English.
Period of Mature Exalish, with Chart. Chapter Vili, The Italian Influence; IX, Puritan Influence; X, French Indluence; XI, Age of Pope; XII, Age of Johnson; XIII, Age of Poetical Romance; XIV, Age of Prose Romance.
The volume concludes with a Chart of Bible Translations, a Bibliography or Guide to General Reading, and other aids to the student.

Cleveland's Compendiums,

English Literature. American Literature. English Literature of the XIXth Centdry.

In these volumes are gathered the cream of the literature of the English-speaking people for the school-room and the general readel. Their repatation is national. More than 125,000 copies have been sold.

Boyd's English Classics,

Milton's Paradise Lost.
Young's Night Thoughts.

Thomson's Seasons.

Cowper's Task. Table Talk, \&c. Lord Bacon's Essays.
This series of annotated editions of great English writers, in prose and poetry, is designed for critical reading and parsing in schools. Prof. J. R. Boyd proves himself an editor of high capacity, and the works themselves need no encomiam. As auxiliary to the study of Belles Lettres, etc., these works have no equal.

Pope's Essay on Man,
 Pope's Homer's lliad,

The metrical translation of the great poet of antiquity, and the matchless "Eseay on the Nature and State of Man," by Auexander Pope, afford superior exercise in literature and parsing.

※STHETICS.

Huntington's Manual of the Fine Arts,

A view of the rise and progress of Art in different countries, a brief account of the most eminent masters of Art, and an analysis of the priuciples of Art. It iv complete in itself, or may precede to advantage the critical work of Lord Kames.

Boyd's Kames' Elements of Criticism,

The best edition of this standard work; withont the study of which none may bf considered proficient in the science of the Perceptions. No other study can be Dur sued with so marked an affect upon the taste and refinement of the pupil.

CLEVELAND'S COMPENDIUMS.

TESTIMIONIAIS.

From the New Englander.
This is the rery best book of the klnd we have ever examined. From George B. Eiferson, Esq., Boeton.
The Blographical Sketches are jnst and discriminating; the selections are admin able, and I have adopted the work as a text-book for my first class.

From Prof. Moses Coit Tyler, of the Ifichigan Universify.
I have given yonr book a thorongh examination, and am greatly dellghted with I: and shall have great pleasure in directing the attention of my clasees to a worls which affords so admlrable a blrd's-eye view of recent "Englleh Literature."

From the Saturday Review.
It acqualnts the reader with the characteristic method, tone, and qnality of all the chlef notablities of the period, and will give the carefnl stndent a better dea of the recent history of English Literatare than nine educated Englishmen in ten possess. From the Methodisl Quarterly Review, New York.
This work is a transcript of the best American mind; a vehlcle of the noblest American spirit. No parent who would lntroduce his child to a knowledge of our conntry's llterature, and at the same time indoctrlnate bls heart in the purest principles, need fear to pnt thls manual in the youthfil hand.

> From Rev. C. Peirce, Princtpal, West Neuton, Mass.

I do not belleve the work is to be fonnd from whlch, whin the eame limits, so much interesting and ralnable information in regard to Engllsh writers and Engllsh literatnre of every age, can be obtalned; and it deserves to find a place in all onr high schools and academles, as well as in every private library.

From the Independent.

The work of selection and compilatlon-reqniling a perfect famlliarity with the whole range of Engllsh literature, a judgment clear and lmpartlal, a taste at once delicate and severe, and a most senslive remard to purity of thought or feelling-has been better accomplished in this than in any kindred volume with which we aro acquainted.

POLITICAL ECONOIMY.

Champlin's Lessons on Political Economy,

An improvement on previons treatises, being shorter, yet containing everything essential, with a view of recent questions in finance, etc., which is not elsewhere fonnd.

From J. L. Bothwisll, PHn. Public School No. 1h. ADDany, N. Y.
I have examined Champlin's Political Economy wlth mnch pleasnre, and shall be pleased to pat it into the hands of my pupils. In quantity and quality I think is euperior to anything that I have examlned.

From Pres. N. E. Cobleigh, Easl Tennessee Wenleyan Univereity.
An examination of Champlin's Political Economy has eatisfed me that it is the book I want. For brevity and compactness, division of the anbject, and clear statement, and for approprlateness of treatment, I consider it a better text-book than any other in the market.

From the Evening Mail. New Fork.
A new Interest has been imparted to the science of political economy since we have been necessltated to ralse snch vast snme of money for the support of the government. The time, therefore, is favorable for the lntroductlon of works like the above. Thls little volume of two hundred pages is intended for beginners, for the common school and academy. It is intended as a basis npon which to rear a more elaborate superstrncture. There is nothing in the princlples of political economy above the comprehension of average acholara, when they are clearly set forth. This reems to have been done by President Champlin in an easy and gracefal maneer.

ELOCUTION.

Thwing's Vocal Culture.

A Drill-Book for voice and gcsture, by Rev. Prof. Thwing, of Brooklyn Tabernscle Lay College. Price 50 cts.

Taverner Graham's Reasonable Elocution,

Based upon the belicf that truc Elocution is the right interpretation of Thovgrt, and guiding the student to an intelligent appreciation, instead of a merely wechanical knowledge, of its rules.

Zachos' Analytic Elocution.

All departments of elocntion-such as the analysis of the voice and the sentence, phonology, rhythm, expression, gesture, etc.-are here arranged for instruction is classes, illustrated by copious examples.

Sherwood's Self Culture.

Self-culture in reading, speaking, and conversation-a very valuable treatise to those who would perfect themselves in thesc accomplishments.

SPEAKERS.

Northend's Little Orator-Child's Speaker.
Two little works of the samc grade but different selcetions, containing simple and attractive pieccs for children under twelvc years of age.

Northend's Young Declaimer.

Northend's National Orator.
Two volumes of Prose, Poetry, and Dialogue, adapted to intermediate and grammar classes respectively.

Northend's Entertaining Dialogues.

Extracts eminently adapted to cultivate the dramatic faculties, as mell as entertain an audience.

Swett's Common School Speaker.
 Selections from recent literature.

Raymond's Patriotic Speaker,

A superb compilation of modern eloquence and poetry, with original dramatic exercises. Nearly every eminent living orator is represented, without distinction of place or party.

COMPOSITION AND RHETORIC.

Brookfield's First Book in Composition,

Making the cultivation of this important art feasible for the smallest child. By a new method, to indace and stimulate thought.

Boyd's Composition and Rhetoric.

This work furnishes all the aid that is needful or can be desired in the various departments and styles of composition, both in prose and verse.

Day's Art of Rhetoric,

Noted for exactncss of definition, clear limitation, and philosophical derclopment of subject; the large share of attention given to Invention, as a branch of Rhetoric. and the unequalled analysis of style.

IMIND AND IMORALS.

Mahan's Intellectual Philosophy

The snbject exhaustively considered. The author has evinced learnlng, candor, and independent thinking.

Mahan's Science of Logic

A profound analysis of the laws of thought. The system possesses the merit nf belng lntelligible and self conslistent. Ir additlon to the anthor's carefully elabo1ated vlews, it embraces, results attained by the ablest minds of Great Brlain, Gero many, and France, in this department.

Boyd's Elements of Logic

A systematic and philosophlc condensation of the subject, fortlied with additions from Watts, Abercromble, Whately, \&c.

Walts on the Mind

The Improvement of the Mind, by Isaac Watts, is designed as a guide for the attainment of nseful knowledge. As a text-book it is unparalleled; and the discipline it affords cannot be too highly esteemed by the educator.

Peabody's Moral Philosophy

A short course; by the Professor of Christian Morals, Harvard University-for the Freshman Class and for High Schools.

Fletcher's Practical Ethics

A topical analyeis of each of the Virtues and Graces, furnishing outlines for the pupil to illustrate from his own experience or reading.

Alden's Text-Book of Ethics

For young pupils. To ald in syatematlzing the ethical teachings of the Bible, and point ont the coincidences between the instractions of the sacred roleme and the sound conclusions of reason.

Willard's Morals for the Young

Lessons in conversational style to indicate the elements of moral philosophy. The stndy is made attractive by narratives and engravings.

GOVERNMENT.

Howe's Young Citizen's Catechism

Explaining the daties of District, Town, City, County, State, and United Statea Offcers, with rules for parliamentary and commercial bnsiness.

Young's Lessons in Civil Government
 A comprehensive view of Government, and abstract of the laws showing the

 rights, duties, and responsibilities of citizens.
Mansfield's Political Manual

This is a complete view of the theory and practice of the General and State Gorernments, deelgned as a text-book. The anthor is an esteemed and able professor of constltutional law, widely known for his eagaclous atterances in the public press.

Martin's Civil Government

Emanating from Massachusetts State Normal School. Mistorical and stasistical. Each chapter sammarized by a succinct statement of underlying princlples on which good government is based.

MODERN LANGUAGE.

Illustrated Language Primers,

Frencil and English.
German and Exglisi.
Spanish and English.

The names of common objects properly illustrated and arranged in easy lessona.

Ledru's French Fables,

 Ledru's French Grammar, Ledru's French Reader,The author's long experience has enabled him to present the most thoroughly practical text-books extant, in this branch. The system of pronunciation (by phonetic illastration) is original with this anthor, and will commend itself to all American teachers, as it enables their pupils to secure an absolntely correct pronunciation withont the assistance of a native master. This feature is peculiarly valnable also to "self-tanght" stndents. The directions for ascertaining the gender of French nonns-also a great stambling-block-are peculiar to this work, and will be found remarkably competent to the end proposed. The criticism of teachers and the test. of the school-room is invited to this excellent series, with confidence.

Worman's French Echo,

To teach conversational French by actual practice, on an entirely new plan, which recognizes the importance of the student learning to think in the language which he speaks. It furnishes an extensive vocabulary of words and expressions in common use, and suffices to free the learner from the embarrassments which the peculiarities of his own tongue are likely to be to him, and to make him thoroughly familiar with the use of proper idioms.

Worman's German Echo,

On the same plan. See Worman's German Series, page 42.

Pujol's Complete French Class-Book,

Offers, in one volume, methodically arranged, a complete French course-usually embraced in series of from five to twelve books, inclnding the bnlky and expensive Lexicon. Here are Grammar, Conversation, and choice Literature-selected from the best French anthors. Each branch is thoronghly handled; and the stndent, baving diligently completed the course as prescribed, may consider himself, without further application, au fait in the most polite and elegant language of modern times.

Pujol's French Grammar, Exercises, Reader,

These volumes contain Part I, Parts II and III, and Part IV of the Complete ClassBook respectively, for the convenience of scholars and teachers. The Lexicon is bound with each part.

Maurice-Poitevin's Grammaire Francaise,

American schools are at last supplied with an American edition of this famons text-book. Many of onr best institutions have for years been procuring it from abroad rather than forego the advantages it offers. The policy of putting students who have acqnired some proficiency from the ordinary text-books, into a Grammar written in the vernacnlar, cannot be too highly commended. It affords an opportunity for finish and review at once; while embodying abundant practice of its own rules.

Joynes' French Pronunciation,
 Willard's Historia de los Estados Unidos,

The History of the United States, translated by Professors Tolon and De Tornos, Fill be found a valuable, instructive, and entertaining reading-book for Spanieh classes.

Pujol's Complete French Class-Book.

TESTIMONIAL\&.
From Prof. Ellas Peissner, Cnion Collegs.

I take great pleasure in recommending Pujol aud Van Norman'e French Class Book, as there is no French grammar or chase-book whicil cau bo compared vilh It in completeness, system, clearness, and generai utility.

From Enward Nortu, Fresident of Ilamilion College.

I have carefully examined Pujol and Van Norman's French Clasa-Book, and am atisfed of lts auperiority, for college parposes, over any other heretolore need. Wo shall dot fail to use it with our next class in F'rench.

Frm A. Cubtis, Pres't of Cincinnati Literary and Scientilc Institule.
I am confident that it may be made an instrument in conveying to the atudent, th from six months to a year, the art of speaking and writing the French with Imort native fluency and propriety.

From Hrax Orcutt, A. M., Prin. Glemrood and Tilden Ladies' Seminaries.

I have nsed Pujol's French Grammar in my two seminaries, exelusively, for more than a year, aud have no hesitation in raying that I regard it the beet textbook in this department extant. And my opinion is confirmed by the testimony of Prof. F. De Launay and Mademoiselle Marindin. They assure me that the book is eminently accurate and practical, as tested in the echool-roorn.

From Prof. Taeo. F. De Fumat, Hebrew Educational Institute, Memphis, Tenn.

 M. Pujol's French Grammar is one of the best and most practical works. The French language is chosen and eiegant in style-modern and casy. It is far euperior to the other French class-books in this conntry. The felection of the conversational part is very good, and will interest pupils; and being all compieted in only one volume, it is eapecialiy desirable to have it introduced in our schools.From Prof. James II. Wormay, Bordentourn Female College, N. J. The work is upon the same flan as the text-books for the etudy of French and English pubilshed in Berlin, for the stady of those who have not the ald of a teacher, and these books are considered, by the first authorities, the beat booke. In most of our institutions, Americans teach the modern languager, and heretofore the troubie has been to give them a text-book that wouid dispore of the diffeculties of the French pronnaciation. This dificulty is succesenully removed by P. and Van N., and I have every reason to believe it will soon make its way into most of our best echools.

From Prof. Cilazles S. Dod, Ann Smith Academy, Lexington, Ts.
I cannot do better than to recommend "Pujol and Van Norman." For comprekensive and eystematic arrangement, progreasive and thorongh development of all grammatical principles and idioms, with a due admixture of theoreticai knowldige and practical excrcise, Iregard it as superior to any (other) book of the lind.

From A. A. Forstee, Prin. Pinehurst School, Tononto, C. W.

I have great satikfaction in bearing testimony to M. Pujol'a System of French Instruction, as given in his compiete class-book. For clearness and comprehensiveness, adapted for ali classes of papila, I have found it superior to any other work of the kind, and have now used it for some years in my establiehment with great success.

From Prof. Otro Fedder, Maplecood Institute, Putefteld, Mass.
The conversational exercises will prove an immense eaving of the hardest kind of labor to teachers. There is scarcely any thing more trying in the way of teaching isrenage, than to rack yonr brain for short and easily intelligibie bits of conversation, and to repeat them time and again with no better result than estorting at long intervals a doubting "oni," or a heaitating " non, monsieur"

[^36]
GERMAN.

A COMPLETE COURSE IN THE GERMAN. By JAMES H. WORMAN, A. M.

Worman's Elementary German Grammar Worman's Complete German Grammar

These volumes are designed for intermediate and adranced clacess respectively.
Thongh following the same gencral method with "Otto" (that of "Gaspey'). our author differs esscntially in its application. He is more practical. more sys tematic, mose accurate, and besides introduces a number of invaluable features which have never before been combined in a German grammar.
Among other things, it may be claimed for Prof. Worman that he fas bcen the first to introduce in an American text-book for learning Germar, a system of analogy and comparison with other languages. Our best teachers are also enthusiastic about his methods of incuicating the art of speaking, of understanding the spoken language, of correct pronunciation; the sensible and convenient original classification of nouns (in four declensions), and of irregular vet bs, a) eo deserves much praise. We also note the use of heavy type to indicate otymologica! changes in the paradigms, and, in the exercises, the parts which spccially illustrate preceding rules.

Worman's Elementary German Reader Worman's Collegiate German Reader

The finest and most jndicions compilation of classical and standard German Literature. These works embrace, progressively arranged, selections from the masterpieces of Goethe, Schiller, Korner, Seume, Uhland, Freiligrath, Heine, Schlegel, Holty, Lenau, Wieland, Herder, Lessing, Kant, Fichte, Schelling, Winkelmann, IImmboldt, Ranke, Ranmer, Menzel, Gervinns, \&c., and contains complete Goethe's "Iphigenie," Schiller's "Jnngfran;" also, for instruction in modern conversational German, Benedix's " Eigensinn."
There are besides, Biographical Sketches of each author contributing, Notes, explanatory and philological (after the text), Grammatical References to all leading grammars, as well as the editor's own, and an adequate Vocabulary.

Worman's German Echo

Consists of exercises in colloquial style entirely in the German, with an adeqnate vocabulary, not only of words but of idioms. The object of the system dcveloped in this work (and its companion volume in the French) is to break up the laborious and tedious habit of translating the thoughts, which is the stndent's most effectual bar to fluent conversation, and to lead him to think in the language in which he speaks. As the exercises illnstrate scenes in actnal life, a considerable knowledge of the manners and customs of the German people is also acquirad from the use of this manual.

Worman's German Copy-Books, a Numbers,

On the same plan as the most approved systems for English penmanship, wits Drogressive copies.

Worman's German Grammars.

TघSTIMONIAIS.

From Prof. I. W. Jones, I'etersuurg Femnte College, Tir.
From what I have seen of the work it is slmost certain I ahall introducs it inte this institution.

From Prof. G. Caxpbell, Eniversity of Minnesota.
A valucble addition to our school-books, and will find many friends, and do gre 1 good.

From Prof. O. II P. Cosperw, Mary Military Inst, Ma
I am better pleased with them than any I have cver taugit. I have already order I through our booksellers.

From Prof. R. S. Krndalm Ferron Academy, Conn.
I at once put the Elementary Gramuar lato the hands of a class of beginners, and have used it voith great natinfuction.

From Prof. D. E. ifolures, Berlin Academy, Wia.
Worman's German works are superior. I shall use them hercafter in my German classes.

From Prof. Magses Becmioltz, Miram College, Ohio.
I have examined the Complete Grammur, and find at excellenh. You may reiy that it will be used here.

From Prin. Tros. T. Tober, Paducah Femalo Seminary, Ky.
The Complete German Grammar is worthy of an extenslve circulation. It is admirubly adapted to the ciass-room. I shall use it

From Prof. Alex. Rosenspitz, Houston Acaderiy, Tearas.
Bearer wili take and pay for 8 dozen copies. Mr. Wormsin deserves the approbation and esteem of the teacher and the thanks of the student.

From Prof. G. Malssene, Augusta Seminary, Maine.
The Complete Grammar cannot fall to givs great eatisfuetion by the slraplicity of its arrangement, and by its completeners.

From Prin. Oval Preeer, Christian University, Mo.
Just such n series as is positively necessary. I do hope the author will succeed as well in the Freach, dec, as he fias in the German.

From Prof. S. D. Hillanan, Dickinson Collige, Ia.
The class have lately commenced, and my examination thus far warrunts me in mayiug that I regard it as the best grammar for instruction in the German.

From Prin. Silas Liversore, Bloomfield Seminary, Mo.
I have found a ciassicaily and scientifically educated Prusedan gentleman whom I propose to make German instructcr. I have shown him both your German grammars. He has expressed lis apprubution of them generally.

From Prof. Z. Test, Howland School for Young Ladies, N. I.
I shall introduce the books. From a cursory examination I have no hesitation in prononncing the Complete Grammar a decided improcement on the text-books al present in use in this country.

From Prof. Lewis Kistlek, Northicestern Inirersity, Ill
IIaring looked throngh the Complete Grammar with some care I must eay that you have produced a good book; you may be awarded with this gratificatlon-that your grammar promotes the facility of learning the German language, and of becoming acquaiuted with its rich ilterature.

From Pres. J. P. Rous, Stochrell Cullegiats Ind., Ind.
I supplied a class with the Elementary Grammar, and it gives complefe aartefuel| tion. The conversatlonal and readlng exercises are well calculatod to 110.0 trato the principles, and iead the student on an easy yet thorough course I thiok the Com plate Grammar equally attractive.

Nationai Series of Staniard School-Bouks.

THE CLASSICS.

LATIN.

Silber's Latin Course,

The book contains an Epitome of Latin Grammar, followed by Reading Exercises, with explanatory Notes and copious References to the leading Latin Grammara, and also to the Epitome which precedes the work. Then follow a Latin-English Vocabulary and Exercises in Latin Prose Composition, being thus complete in itself, and a very suitable work to put in the hands of one about to study the language.

Searing's Virgil's Eneid,

It contains only the first six books of the . Fneid. 2. A very carefnlly constructed Dictionary. 3. Sufficiently copious Notes 4. Grammatical references to four leading Grammars. 5. Numerous Illustrations of the highest order, 6. A superb Map of the Mediterranean and adjacent countries, 7 . Dr. S. H. Taylor's "Qnestions on the Eneid." 8. A Metrical Index, and an Essay on the Poetical Style. 9. A photographic fac simile of an early Latin M.S. 10. The text according to Jahn, but paragraphed according to Ladewig. 11. Superior mechanical exacution.
"Have examined it with great pleasnre and can eafely say it is the best edition of Virgil with which I am acquainted."-Pbof. Leslef Wagener, Bethel College, Ky.
"Am very mnch pleased. In following points think it snrpasses: instructive illustrations, pointed and sensible notes where they are conrenient to nse, and a vucabulary that gives the derivation of Latin voords."-Prin. E. L. Richardson, Addison trion School, N. Y.
"A fine specimen of art, and edited in a masterly manner."-SUPT. W. C. Rotr, Lavorence Public Schools, Kansas.
"Of Searinges Virgil I cannot speak in too high terms. While as a text-book it contains as many excellences as any I have ever seen, the fincness of the paper and the beauty of typographyand exceeding neatness make it an ornament for the centre-table."-PriN. E. C. Spalding, Nunda Academy, N. Y.

For further testimonials, see page 45.

Blair's Latin Pronunciation,

An inquiry into the proper sounds of the Language during the Classical Period. By Prof. Blair, of Hampden Sidney College, Va.

GREEK.

Crosby's Greek Grammar, Crosby's Xenophon's Anabasis,

MYTHOLOGY. Dwight's Grecian and Roman Mythology.

School edition,
University edition,

[^37]
SEARING'S VIRGIL.

SPECIMEN FRAGMENTS OF LETTERS.

"I adopt it gladly."-Pran. V. Dabney, Loudoun Schoal, Va.
"I like Seariag's Virgil."-Pror. Bristom Ripon College, Wis.
"Meets my desires very thoroughiy."-Prof. Clank, Berea College, Ohto.
"Supe rior to any other edition of Virgil."-Press. Inaln, Macon College, Mo.
"Shall adopt it at once."-Pris. B. P. Baker, Searcy Female Institute, Ark.
"Your Virgil is a beauly."-Prof. W. II. De Motre, Illinois Fenale College.
"After use, I regard it the best."-Pran. G. II. Barton, Iiome Academy, N. Y.
"We like it better every day."-Prin. R. K. Bughraz, Allentoun Academy, Ia.
"I am delighted with your Virgil."-Prin. W. T. Leonard, Pierce Acailemy, Mar\&
"Stands well the test of ciass-room."-Prin. F. A. Chasz, Lyone Col. Inat., Ionca.
"I do not see how it can be improved."-Prin. N. F. D. Browne, Charl. Mall, Md.
"The most complete that I have seen."-Pris. A. Brown, Columbus Ligh School, thio.
"Onr Professor of Language very highly approves,"-SCPT. J. G. Jayez, Texas Military Institute.
"It responds to a want long felt by teachers. It is beantiful and compiete."Frof. Brooks, University of MFinnesota.
"The ideal edition. We want a few more classics of the rame sort."-Prn. C. F. P. Bancroft, Lookout Mountain Institute, Tenn.
"I certainly have never seen an edition so complete with important reqnisite for a student, nor with such fue text and general mechanicai execution."- Pres. J. R. P'ARK, Universily of Deserel, Utah.
"It is charming both in its defign and execution. And, on the whole, I think it a the beat thing of the kind that I have seen."-Prof.J. De F. Ricuards, Pres. pro tem. of University of Alabama.
"In beanty of execntion, in jndicious notes, and in an adequate rocabulary, it merits all praise. I shaii recommend its introduction."-Pres. J. K. Patterson, Kentuchy Agricultural and Mechanical College.
"Containing a good voca bulary and judicious nntes, it wili cnabie the indnatrions student to acqnire an accurate knowledge of the most interesting part of Virgil's works."-Prof. J. T. Dunelin, Last Alabama College.
"It wants no element of completeness. It is by far the best classical text-book With which I am acquainted. The notes are just right. They heip the stndent when he most needs help."-Prin. C. A. Bunker, Caledonia Grammar School, It.
"I have examined Searing's Virgii with interest, and find that it more nearly meets the wants of students than that of auy other edition with which I am acqnainted. I am abie to introduce it to some extent at once."-PRLN. J. Easter, East Gencsce Conference Seminary.
"I have been wishing to get a sight of it, and it exceeds my cxpectations. It is a beautiful book in crery respect, and bears evidence of carefui and critical study. The engravings add instruction as well as interest to the work, I shall recommend it to my classes."-Prin. Cras. H. Chandler, Glenuood Ladies' Seminary.
"A. S. Barnes \& Co. have published an edition of the first sis books of Virgil'3 Encid, which is suijerior to its predecessors in severai respects. The publishers have done a good service to the cause of classical edncation, and the book deserves a larce circulation."-Prof. Georee W. Collord, Brooklyn Polylechnic, N. Y.
"My attention was cailed to Scaring's Virgil by the fact of Its containing a vocebniary which would obviate the necessity of procuring a lexicon. But une in the clane-room has impressed me most favorabiy with the accuracy and just proportion of its notes, and the general excelience of fis grammaticai suggestions. The yens erai character of the book in ite paper, its typography, and its engravingas is hiphiy commendable, and the fac-simile mannscript is a vainable feature. I take great pieasure in commending the book to ali who do not wish a coippiete cerition of Virgii. It suits our short school courses admirabiy."-IIEniry L. Bos.5wood, Masher γ Princeton Ligh Schun!, Iu.

The National Series of Standard School-Books.

R 玉 C ORDS.

Cole's Self-Reporting Class-Book,

For saving the Teacher's labor in averaging. At each opening are a full set of Tables showing any scholar's standing at a glance and cntirely obviating the neces sity of compntation.

Tracy's School-Record,
 Pocket edition,

For keeping a simple but exact record of Attendance, Deportment, and Scholarship. The larger edition contains also a Calendar, an extensive list of Topics for Compositions and Colloqnies, Themes for Short Lectnres, Suggestions to Yonng Teachers, etc.

Brooks' Teacher's Register,

Presents at one view a record of Attendance, Recitations, and Deportment for the whole term.

Carter's Record and Roll-Book,

This is the most complete and convenient Record offered to the public. Besides the usnal spaces for General Scholarship, Deportment, Attendance, etc., for each name and day, there is a space in red lincs enclosing six minor spaces in blne for recording Recitations.

National School Diary,

A little book of blank forms for weekly report of the standing of each scholar. from teacher to parent. A great convenience.

REWARDS.

National School Currency,

A little box containing certificates in the form of Money. The most entertaining and stimnlating system of school rewards. The scholar is paid for his merits and flined for his shortcomings. Of conrse the most faithful are the most snccessful in business. In this way the asc and value of money and the method of keeping acconnts are also taught. One box of Currency will snpply a school of fifty pupils.

TACTICS.

The Boy Soldier,

Complete Infantry Tactics for Schools, with iliustrations, "CI the use of those whe would introduce this pleasing relaxation from the conenlig dnties of the desk.

The National Series of Stundard siehoul-Wooks.

CHARTS.

McKenzie's Elocutionary Chart, Baade's Reading Case,

This remarkable piece of school-room furnituro is a receptacle containing a numser of primary carus. By an arrangement of slides on the front, one sentence at 3 time is shown to the clase. Twenty-eight thousand transporitions may be made, atfording a variety of progressive exerciees which no other piece of apparatue offers. One of its best features is, that it is so exceedingly simple as not to get ou: forder, while it may be operated with one finger.

Marcy's Eureka Tablet,

A new system for the Alphabet, by which it may be tanght withont fail in nine essons.

Scofield's School Tablets,

On Five Cards, exhibiting Ten Surfaces. These Tablets teach Orthograpby. Reading, Objeet-Lessons, Color, Form, etc.

Watson's Phonetic Tablets,

Four Cards, and Eight Surfaces; teaching Pronuneiation and Elocution phonetio my-for class exercises.

Page's Normal Chart,

The whole acience of Elementary Sonnds tabulated. By the anthor of Page's Theory and Praetlce of Teaching.

Clark's Grammatical Chart,

Exhibits the whole Selence of Language in one camprehensive diagram.

Davies' Mathematical Chart,

Mathematies made simple to the eye.

Monteith's Reference Maps, School series, Grand senee,

 Eight Numbers. Monnted on Rollers. Names all lald aorn in fmall type. so that to the pupil at a short distance they are Oatline Maps, while they serve as their onon key to the teacher.
Willard's Chronographers,

Historical. Fonr Nambers. Aneient Chronographer; Finglish (hronographer; American Chronographer ; Temple of Time (Geucrai). Dates and Eventa repre. sented to the eye.

APPARATUS.

Harrington's Geometrical Blcoks,

These patented blocks are hinged, so that eaen form can be dissected.

Harrington's Fractional Elocks, Steele's Chemical Apparatus,
Steele's Philosophical Apparatus, (see p.28)
Steele's Geological Cabint, (see p. 28)
Wood's Botanical Apparatus, (see p.30)
Bock's Physiological Apparatus,

M USIC.

The National School Singer,

Bright, new masic for the day school, embracing Song Lessons, Exercise Songe, Songs of Study, Order, Promptness and Obedience, of Indnstry and Nature, Patriotic and Temperance Songs, Opening and Closing songs; in fact, everything needed in the school-room. By an eminent Musician and Composer.

Jepson's Music Readers. 3 vols.

These are not books from which children simply learn songs, parrot-like, but teach the subject progressively-the scholar learning to read music by methods similar to those employed in teaching him to read printed language. Any teacher, however ignorant of masic, provided he can, npon trial, simply sound the scale, may teach it without assistance, and will end by being a good singer himself. The "Elementary Music Reader," or first volume, fully develops the system. The two companion volumes carry the same method into the higher grades, but their nse is not essential.
The First Reader is also published in three parts, at 30 cents each, for those who prefer them in that form.

Bartley's Songs for the School.

A selection of appropriate Hymns of an unsectarian character, carefully classified and set to popular and "singable " Tunes, for opening and closing exercises. The Secular Department is full of bright and well selected music.

Nash \& Bristow's Cantara,

The first volume is a complete musical text-book for schools of every grade. No. 2 is a choice selection of Solos and Part Songs. The anthors are Directors of Mnsic in the public schools of New York City, in which these books are the standard of instruction.

The Polytechnic

Collection of Part Songs for High and Normal Schools and Clubs. This work contains a quantity of exceedingly valnable material, heretofore accessible only in sheet form or scattered in numerous and costly works. The collection of "College Songs" is a very attractive feature.

Curtis' Little Singer,-School Vocalist,

Kingsley's School-Room Choir,-Young Ladies' Harp, Hager's Echo (A Cantata).

DEVOTION.

Brooks' School-Manual of Devotion,

This volume contains daily devotional exercisès, consisting of a hymn, selections of Scripture for alternate reading by teacher and papils, and a prayer. Its value for opening and closing echool is apparent.

> Brooks' School Harmonist,
> Contains appropriate tunes for each hymn in the "Manual of Devotion" described sbove.

A. S. Barnes \& Co:'s Cathlogue. DEPARTMENT OF GENERAL LITPRATURE.

PRICES LNCLUDING POSTAGE.

THE TEACHERS' LIBRARY. Object Lessons-Welch,
 This is a complete exposition of the popular modern eystem of "object-teaching, " for teachers of primary ciasses.
 Theory and Practice of Teaching-Page, - - 150
 This volume has, without donbt, been read by two hundred thousand teachers, and its popularity remains undiminished-large editions being exhausted searly. It was the pioneer, as it is now the patriarch, of professional works for teachers.
 The Graded School-Wells, -
 25
 The proper way to organize graded schools is here illustrated. The author has availed himself of the best elements of the several aystems prevalent in Boston, New York, Philadelphia, Cincinneti, St. Louis, and other cities.

The Normal-Holbrook,
150
Carries a working school on its rigit to teachers, showing the most approved methods of teaching all the common branches, including the technicalities, explanations, demonstrations, and defnitions introductory and peculiar to each branch.
School Management-Holbrook,
Treating of the Teacher's Qnallifications: How to overcome Difficulties in Self and Others: Organization : Discipline: Methods of inciting Diligence and Order; Strategy in Management; Object Teaching.
The Teachers' Institute-Fowle, - . . . 125
This is a volume of suggrestions inspired by the author"s experienceat institutes, in the instruction of young teachers. A thousand points of interest to this class are most satisfactorily dealt with.
Schools and Schoolmasters-Dickens, - . - I 25
Appropriate selections from the writings of the great novelist.
The Metric System-Davies, - . . . 150
Considered with reference to its general introduction, and embracing the views of John Quincy Adams and Sir John Herschel.
The Student; The Educator-Phelps, - each, 150
The Discipline of Life-Phelps, - - - ${ }^{1} 75$
The anthoress of these works is one of the most distingulshed writers on educatism, and they cannot fail to prove a valuable addition to the School and Teachers Libzurea, being in a high degree both interesting and instractive.
A Scientific Basis of Education-Hecker, - - 250
Adaptation of strdy and claseiflation by temperamenta.

Teachers' Hand-Book - Phelps - . . . \$150
 By Wm. F. Phelps, Principal of Minnesota State Normal School. Embracing

 the objects, history, organization and management of Teachers' Institutes, followed by Methods of Teaching, in detail, for all the fundamental branches. Every young teacher, every practical teacher, every experienced teacher even, needs this book.
From the New York Tribune.

"The discipline of the school should prepare the child for the discipline of life. The country schoolmaster, accordingly, holds a position of vital interest to the destiny of the republic, and should neglezt no means for the wise and efficient discharge of his significant functions. This is the key-note of the present excellent volume. In view of the supreme importance of the teacher's calling, Mr. Phelps has presented an elaborate system of instruction in the elements of learning, with a complete detail of methods and processes, illustrated with an abundance of practical examples and enforced by judicious counsels, which may serve as an aid to the teacher in the performance of his arduous duties ${ }_{3}$ and in the attainment of the highest excellence in his profession. The author's directions may not always be accepted without challenge by experienced instructors, who, however, are encouraged to think for themselves; but they are always suggestive, and cannot fail to be of signal value to those who are just entering upon their profession and beginning to comprehend its difficulties, as well as to discover its secrets."
American Education - Mansfield - - - 150
A treatise on the principles and elements of education, as practised in this country, with ideas towards distinctive republican and Christian education.

American Institutions - De Tocqueville
 150
 A valuable index to the genius of our Government.
 Universal Education - Mayhew - - - - 175

The subject is approached with the clear, keen perception of one who has observed its necessity, and realized its feasibility and expediency alike. The redeeming and elevating power of improved common schools constitutes the inspiration of the volume.
Higher Christian Education - Dwight 150
A treatise on the principles and spirit, the modes, directions and results of all true teaching; showing that right education should appeal to every element of enthusiasm in the teacher's nature.

Oral Training Lessons - Barnard

The object of this very useful work is to furnish material for instructors to impart orally to their classes, in branches not usually taught in common schools, embracing all departments of Natural Science and much general knowledge.

Lectures on Natural History - Chadbourne

Affording many themes for oral ingtruction in this interesting science-especially in schools where it is not pursued as a class exercise.

Outlines of Mathematical Science - Davies
 100

A manual suggesting the best methods of presenting mathematical instruction on the part of the teacher, with that ymprehensive view of the whole which is necessary to the intelligent treatment of a part, in science.

Nature and Utility of Mathematics - Davies
 150

An elaborate and lucid exposition of the principles which lie at the foundation of pure mathematics, witb a highaly ingenious application of thelr results to the development of the essential idea of the different branches of the science.
Mathematical Dictionary - Davies and Peck
This cyclopredia of mathematical science defines, with completeness, precision, and accuracy, every technical term; thus constituting a popular sreatise on each branch, and a general view of the whole subject.

Liberal Education of Women-Orton . . **1 50

Treats of "the demand and the metbod;" belng a compilation of the best and most advauced thought on this subject, by the leading writers and educators in England and America. Edited by a Yrufessor in Vastar Coilege.

Education Abroad-Northrop
 *1 50

A thorough discussion of the adrantages and disadvantages of sending American children to Enrope to he educated; aiso, Papers on Legal Preventlou of Iliteracy, Sudy and Health, Labor as an Elucator, aud other kiudred subjects. By the Hon. Secretary of Education for Connecticut.

The Teacher and the Parent-Northend *1 50

A treatise npon common-school edncation, designed to lead teachers to riew their calling in its true light, and to etimulate them to tidelity.

The Teachers' Assistant-Northend *1 50

A natural continnation of the author's prerions work, more directly calculated for daily use ln the administratlon of schooi discipllue and inetructicu.

School Government-Jewell

Full of advanced ideas on the subject whlch its title indicates. The criticisms upon current theories of panishment and echemes of administration have excited general attention and comment.

Grammatical Diagrams-Jewell *1 00
 The diagram systen of teaching grammar explained, defended, and improved.

 The curious in literature, the scarcher for truth, those interested in new inventions, as well as the disciples of Prof. Clark, who would see their favorite theory falrly treated, all want this book. There are many who would like to be made familiar with this system before risking ita use in a class. The opportunlty is here afforded.
The Complete Examiner-Stone -

Consists of a feries of questions on every English branch of school and academic instruction, with reference to a given page or article of leading text-books where the answer may he found in full. Prepared to aid teachers in eecnring certifcates, pnpils in preparing for promotion, and teachers in selecting review questione.

School Amusements-Root

To assist teachers in making the achool interesting, with hinta upon the management of the fchool-room. Rales for military and gymnastic exercises are included. Illastrated by diagrame.

Institute Lectures-Bates.

These lectures, originally delivered before institutes, are based upon variong inpics in the departments of mental and moral culture. The volume is calculated io prepare the will, awaken the inqniry, and stimnlate the thought of the zcalous teacher.

Method of Teachers' Institutes-Bates . . . *~5

Sets forth the best method of conducting instlitutes, with a detailed acconut of the object, organization, plan of instruction, and true theory of edncation on which ach instruction should be based.

History and Progress of Education

The eystems of education prevaling in all nations and ages, the gradnal adrance to the present time, and the bearing of the past npon the present in this semard, are worthy of the careful in restigation of all concerned in edncation.

THE SCHOOL LIBRARY.

The two elementa of instruction and entertainment were never more happily combined than in this collection of standard books. Children and adults alike will here find ample food for the inind, of the sort that is easily digested, while not degenerating to the level of modern romance.

> LIBRARY OF LITERATURE.
> Millon's Paradise Lost. Boyd's Illustrated Ed., \$1 60 Young's Night Thoughts do. . . 160 Cowper's Task, Table Talk, \&c. . do. . . 160 Thomson's Seasons do. . . 160 Pollok's Course of Time do. . . 160

These works, models of the best and parest literature, are beautifully illastrated, and notes explain all donbtful meanings.

Lord Bacon's Essays (Boyd's Edition) 160

Another grand English classic, affording the highest example of purity in lauguage and style.
The Iliad of Homer. Translated by Pope. . . 80
Those who are unable to read this greatest of ancieut writers in the original, should not fail to avail themselves of this metrical version.

Compendium of Eng. Literature-Cleveland, 225 English Literature of XIXth Century do. 225 Compendium of American Literature do. 225

Nearly one hundred and fifty thousand volumes of Prof. Cleveland's inimitable compendiums have been sold. Taken together they present a completc view of literatnre. To the man who can afford but a few books these will enpply the place of an extensive library. From commendations of the very highest authorities the following extracts will give some idea of the enthusiasm with which the works are regarded by scholars:
With the Bible and yonr volumes one might leave libraries withont very painful regret.-The work cannot be found from which in the same limits so much interesting and valuable information may be obtained. - Good taste, fine scholarship, familiar acquaintauce with literature, unwearied industry, tact acquircd by practicc, an interest in the culture of the yonng, and regard for truth, purity, philanthropy and religion are united in Mr. Cleveland.-A jndgment clear and impartial, a tastc at once delicate and severe. The biographies are just and discriminating. - An admirable bird's-eye view.-Acqnaints the reader with the characteristic method, tone, and quality of each writer.--Succinct, carefully written, and wonderfully comprehensive in detail, etc., etc.

Milton's Poetical Works-Cleveland

This is the very best edition of the great Poet. It includes a life of the anthor, notes, dissertations on each poem, a faultless text, and is the oniy edition of Milton with a complete verbal Indcx.

LIBRARY OF HISTORY.

Seven Historic Ages-Gilman, $\$ 100$
Or, Talks about Kings, Quecns, and Rarbarians. These delightful eketches of notable events stir the imayination of the young reader, and give him a taste for further historical readiug. Iliustrated.
Outlines of General History-Gilman,
I 25
The nnmber of facts which the anthor has compressed into these outline eketches is really surprising; the chapters on the Middle Ages and Fendalism afford etriking examples of his power of succinct but comprehensive ptatement. In his choice of representative periods and events in the histuries of Nations he shows very sound judgment, and his characterization of conspicuous historical Igures to accurate and impartial.
Great Events of History-Collier,
This celebrated work, edited for American readers by Prof. O. R. Willis, gives, in a series of pictures, a pleasantly readable and easily remembered riew of the Christian era. Each chapter is headerl by its central point of interest to afford association for the mind. Delineations of tife and manners at different periods are interwoven. A geographical appendix of great value is added.
History of England-Lancaster,
150
An arrangement of the easential facts of English History in the briefest manner consistent with clearness. With a fine Map.
History of Liberty-Aiken, - - . . 00
Explaining the growth of the "fair consummate flower" of freedom in America as the result of centuries of trial and experience in the Oid World.
Critical History of the Civil War-Mahan, - - 300
A logical analysis of campaigns and battles, and the causes of victory and defeat. By Dr. Asa Mahan, first President of Oberlin College. Dr. Mahan never forgets that hlstory is "philosoplay teaching by examples," and his work should be a text-book for American youth.
History of Europe-Alison,
A reliable and standard work, which covers with clear, connected, and complete narrative the eventrul occurrences of the years A.D. 1789 to 1815 , being mainly a history of the career of Napoleon Bonaparte.
History of Rome-Ricord, - - - I 75
An entertaining narrative for the young. Illustrated. Embracing successively, The Kings; The Republic; The Empire.
Ecclesiastical History-Marsh, - - - 200
A history of the Church in all ages, with a comprehensive review of all forms of religion from the creation of the world. No other source affords, in the same compass, the information here conveyed.
History of the Ancient Hebrews-Mills, - 75
The record of "God's people" from the call of Abraham to the destruction of Jcrusalem; gathered from sources sacred and profane.
The Mexican War-Mansfield,
I 50
A history of its origin, and a detalied account of its rictorios; with omelal despatches, the treaty of peace, and valuable tables. Illustrated.
Early History of Michigan-Sheldon, - - 250
A work of value and deep interest to the people of the West. Complled under the supervision of Hon. Lewis Cass. Portraits.
History of Texas-Baker, - - . . 25
A pithy and interesting resumé. Copionsly illustratell. The State constitatiun and extracts from the speeches and writings of eminent Toxans are appended.

NEW LIBRARY OF HISTORY.

Barnes' Centenary History, - - - \quad * $\$ 00$
"One Fundred Years of American Independence." Thls superbly illustrated work, by the author of "Barnes' Brief Histories" (for schools), is appropriately issued in the "centennial year" (1876). An exteuded Iutroduction brings down the history from the earlicst times. The lcading idea is to make American History popular for the masses, and especially with the yonng. The style is therefore life-like and vivid, carrying the reader along hy the sweep of the story as in a novel, so that when he begins an account of an important event he cannot very well lay down the hook until he finishes.

Lamb's History of New York City.

One of the most important works ever issued. It opens with a brlef outline of the condition of the old world prior to the settlement of the new, and proceeds to give a careful analysis of the two great Datch Commercial Corporations to which New York owes its origiu. It skeiches the rise and growth of the little colony on Manhaitan Island; describes the Iudian Wars with which lt was aflicted; gives color aud life to its' Dutch rulers; paiuts its subjugation hy the English, its after vicissitudes, the Revolution of 1689 ; in short, it leads the reader through one continuous chain of events down to the American Revolution. Then, gathering np the threads, the author gives an artistlc and comprehensive account of the progress of the City, in extent, education, culture, literature, art, and political and commercial importance, during the last century. Prominent persons are introduced ln all the different periods, with choice hits of family history, and glimpses of social life. The work contains maps of the City in the different decades, and several rare portraits from original painings, which have never before heen engraved. The illustrations, about 250 in number, are all of an interestiug and highly artistic character.
The work is now being published, by suhscription only, in about 30 parts, at 50 cents each.
Carrington's Battles of the Revolution, - - - \$600 A careful descriptlon and analysis of every engagement of the War for Independence, with topographical charts prepared from personal surveys hy the author, a veteran ofticer of the U. S. Army, and Professor of Military Science in Wahash College.
Baker's Texas Scrap-Book, - - - $\$ 500$
Comprising the History, Biography, Literature, and Miscellany of Texas and its people. A raluable collection of material, anecdotical and statistical, which is not to be found in any other form. The work is handsomely illustrated. (Sheep, $\$ 6.00$.)

LIBRARY OF REFERENCE.

Home Cyclopædia of Literature and Fine Arts,
A complete index to all terms employed in belles lettres, philosophy, theology, law, mythology, painting music, sculpture, architecture, and all kindred arts.
The Rhyming Dictionary-Walker, I 25

A serviceable manual to composers, being a complete index of allowable rhymes. The Topical Lexicon-Williams, I 75
The useful terms of the English language classified by subjects and arranged according to their affuities of meaning, with etymologies, definitions, and illus, rstions. A very entertaining and instructive work.
Mathematical Dictionary-Davies and Peck, -
Δ thorough compendium of the science, with illustrations and definitions.

LIBRARY OF BIOGRAPHY.

Autobiography of President Finney, - - $\$ 200$

The "Memoirs of Rev. Charles G. Finney, written by himself," with Portrait on stecl. The work presents the experience, labors, and thoughts of the eminens Evangelist, Preacher, and Teacher. It gives the history of the great revivals in which he labored, and also his work in connection with Oberlin College.
The book is full of personal incldents illustrating the power of the Gospel apon the nearts and lives of men, and of practical snggestions for the promotion of revivals. It is also rich in its exhibition of personal religfous experience, and of the nature and the efficacy of prayer.

Life of P. P. Bliss-Whittle, Moody \& Sankey,
 200

The memoriais of the lamented singer and evangelist which have here been gathered by the hands of loving friends wilh commend themseives to a great muititude of interested readers. Ten thousand copies of the book were sold within thirty days anter publication. It contains steel-plate engravings of the Bliss family, and a number of new songs with mnsic not before pnblished.

Life of Dr. Sam Johnson-Boswell, - - - 225
This work has been before the public for seventy years, with increasing approbstion. Boswell is known as "the prince of biographers."

Henry Clay's Life and Speeches-Mallory. 2 vols., 45°
This great American statesman commands the admiration, and his character and deeds solicit the study of every patriot.
Life and Services of General Scott—Mansfield, - I 75
The hero of the Mexican war, who was for many years the most prominent fgure in American military circles, should not be forgotten in the whirl of more recent events than those by which he signalized himsel?. Illustrated.

Garibaldi's Autobiography, - - - - 150
The Italian patriot's record of his own life, translated and edited by his friend and admirer. A thrilling narrative of a romantic career. With portrait.

Lives of the Signers-Dwight, - - - I 5°
The memory of the noble men who declared our country free at the peril of their own "lives, fortunes, and sacred honor," should be embalmed in every American's heart.

Life of Sir Joshua Reynolds-Cunningham, - - 150
A candid, truthfal, and appreciative memoir of the great painter, with a compilation of his discourses. The volume fs a text-book for artists, as well as those who would zequire the rudiments of art. With a portrait.

Prison Life, - - - - - - - 75
Interesting biosraphies of celebrated prisoners and martyrs, designed especially for the instruction and cultivation of youth.

LIBRARY OF TRAVEL.

Texas; the Coming Empire-McDaniel and Taylor, \$150
Narrative of a two thonsand mile trip on horseback through the Lone Star State; with lively descriptions of people, scenery, and resonrces.
Life in the Sandwich Islands-Cheever, - - 150
The "Heart of the Pacific, as it was and is," shows most vividly the contrast between the depth of degradation and barbarism and the light and liberty of civilization, so rapidly realized in these islands under the humanizing inflnence of the Christian religion. Illustrated.
The Republic of Liberia-Stockwell, 125
This volnme treats of the geography, climate, soil and prodnctions of this interesting conntry on the coast of Africa, witl a History of its early settlement. Our colored citizens especially, from whom the fonnders of the new State went forth, should read Mr. Stockwell's account of it. It is so arranged as to be available for a School Reader, and in colored schnols is pecnliarly appropriate as an instrument of education for the young. Liberia is likely to bear an important part in the future of their race.
Ancient Monasteries of the East-Curzon,
150
The exploration of these ancient seats of learning has thrown mnch light apon the researches of the historian, the philologist, and the theologian, as well as the general student of antiquity. Illustrated.
Discoveries in Babylon and Nineveh-Layard, -
I 75
Valuable alike for the information imparted with regard to these most interesting rums and the pleasant adventures and observations of the anthor in regions that to most men seem like Fairyland. Illustrated.

A Run Through Europe-Benedict,

A work replete with instruction and interest-an admirable guide-book.
St. Petersburgh—Jermann,
Americans are less familiar with the history and social customs of the Russian people than those of any other modern civilized nation. Opportunities such as this sook affords are not, therefore, to be neglected.
The Polar Regions-Osborn, -
A thrilling and intensely interesting narrative of one of the famons expeditlons in search of Sir John Franklin-unsuccessful in its main object, but adding many facts to the repertoire of science.

Thirteen Months in the Confederate Army,

The anthor, a northern man couscripted into the Confederate servicc, and rising from the ranks by soldierly conduct to positions of responsibility, had remarkable opportnnities for the acquisition of facts respecting the condnct of the Sonthern armies, and the policy and deeds of their leaders. He participated in many engagements, and his book is one of the most exciting narratives of adventurc ever published. Mr. Stevenson takes no gronnd as a partisan, bnt views the whole subject as with the eye of a neutral-only interested in subserving the ends of bistory ly the contribution of impartial facts. Illustrated.

RELIGIOUS LIBRARY.

Abbott's Commentaries-Mattuen and Mark, \$2 50

With Notes, Comments, Maps, and Iilnatrations; aiso, an Introduction to the, atudy of the New Testament, a condensed Life of Christ, and a Tabular Harmony of the Gospels. Trade edition, $* 2.50$; snbscriptiou editiou, royal $8 \mathrm{vo} * * 3.60$.
Mark and Luke, \$2 00 . Acts of the Apostles, $\$ 200$
With Notes, ete., as above; also, an Introduetion to the stady, a Gazetteer, Chronological Tabie, etc.

Ray Palmer's Poetical Works,
 400

An exquisite edition of the completo hymns and other poctical writings of the most eminent of American sacred poetz-anthor of "My falth looks np to Thee."

Dale on the Atonement, 200
 The theory and fact of Christ's atonement profoundly considered.
 The Service of Song-Stacy - 150

A treatise on Singing, in public and private devotion. Its histor:, office, and importsnce considered.
True Success in Life-Palmer 150

Earnest words for the young who are just about to meet the responsibilities and temptations of mature life.
"Remember Me"-Palmer 150Preparation for the Holy Communion.
Chrysostom, or the Mouth of Gold-Johnson 100

An entertaining dramatie sketeh, by Rev. Edwin Johnson, illustrating the lifo and times of St. Chrysostom.

The Memorial Pulpit-Robinson. 2 vols., each 150

A series of wide-awake sermons by the popular pastor of the Memorial Presbyterian Church, New York.
Responsive Worship-Budington 60

An argument in favor of alternate Seripture reading by Pastor and Congregation.

Lady Willoughby
 The diary of a wife and mother. An historical romance of the seventeenth cen-

 tary. At once beautirul and pathetie, entertaining and instructive.
Favorite Hymns Restored - Gage
 125

Most of the standard hymns have undergone modification or abridgment by compilers, but this volume contains them exactly as written by the authors.
Poets' Gift of Consolation 150

A beautifui seicetion of poems referring to the death of children.

[^38]
VALUABLE LIBRARY BOOKS.

Principles and Acts of the Revolution,

Compiled from "Niles's Register." Being "a collection of Speeches, Orations, and Proceedings, with Sketches and Remarks on Men and Things." This work has long been standard, though for many years ont of yrint, and the eager demand for its republication induces the publishers to offer this new edition.

American Institutions-De Tocqueville . . 150 Democracy in America-De Tocqueville .

The views of this distinguished foreiguer on the genius oif onr political institutions are of unquestionable value, as proceeding from a staudpoint whence we seldom have an opportunity to hear.

Constitutions of the United States

Contains the Constitution of the General Government, and of the several State Governments, the Declaration of Indepeudence, and other important documents relating to American history. Indispeusable as a work of reference.

Public Economy of the United States . . . 225
 A full discussion of the relations of the United States with other nations, espe-

 cially the feasibility of a free-trade policy.
Grecian and Roman Mythology-Dwight

The presentation, in a systematic form, of the Fables of Antiqnity, affords most entertaining reading, and is valuable to all as an index to the mythological allnsions so frequent in literatnre, as well as to students of the classics who would peruse intelligently the classical authors. Illustrated.

General View of the Fine Arts-Huntington 175

The preparation of this work was suggested by the interested inquiries of a group of young people concerning the productions and styles of the great masters Of art, whose names only were familiar. This statement is sufficient index of its cbaracter.

The Poets of Connecticut-Everest

With the biographical sketches, this volume forms a complete history of the poetical literature of the State.

The Son of a Genius-Hofland

A juvenile classic which never wears out, and finds many interested readers in every generation of youth.
Sunny Hours of Childhood 75

Interesting and moral stories for children.
Morals for the Young-Willard $\%$
A series of moral stories, by one of the most experienced of American educators.nlustrated.
Improvement of the 閽ind-Isaac Watts 50A classical standard. No young person should grow up without having perusedit.

PUBLIC WORSFIP.

Songs for the Sanctuary,

By Rev. S. C. Roblvson. 1344 Hymne, with Tunes. The most enccersful modern hymn and tnne book, for congregatious and choirs. More than 200,000 coplea have been rold. Separate editions for Presbyterian, Congremational, and Baptist Chnrches. Editions withont Tunce. $\$ 1.75$; in large type, $\$ 2.50$. Abridged edition ("Songs for Christian Worship"), 859 Hymne, with Tunes, ${ }^{* 1.50}$. Chapel edition, 6or Hyinns, with Tunes, \$1.40.

Psalms and Hymns and Spiritual Songs,

Also by Dr. Robnsson. Differs from "Songs for the Sanctuary" in having all the hymns set to mnsic, for pure congregational slaging. 1294 Psalms and Hymns, with Tunes. Cheap edition, 81.75 ; edition withont Tunes, 75 cents.

Baptist Praise Book,

By Key. Dra. Fuller, Levy, Phelpg, Figh, Armitage. Wineler, Eyabte, Lormer and Manly, and J. P. Holbrook, Eeq. 1311 Mymns, with Tuneb. Edition without Tunes, ミ1.\%5. Chapel editiou, 550 Hymns, with Tunee, 81.25.

Plymouth Collection,

(Congregational.) By Rev. Henry Ward Beecher. 1364 Hymns, with Tunea Separate edition for Baptist Churches. Editions withont Tanes, $\$ 1.25$ and $\$ 1 . \tilde{j}_{3}$

Hymns of the Church,

(Undenominational.) By Rev. Drs. Thompson, Vermilye, and Eddr. 1008 Hymns, with Tunes. The use of this book is required in all congregations of the Reformed Church in America, Edition withont Tunes, \%1.i5. Chapel edition ("Hymns of Prayet and Praise"), $8: 00$ Hymns, with Tunes, 75 cts.

Episcopal Common Praise,

The Service set to appropriato Music, with Tunes for all the Hymns in the Book of Common Prayer.

Hymnal, with Tunes,

(Episcopal) By HaLl \& Whiteley. The new Mymnal, set to Masic. Edition with Chants, $\$ 1.50$. Edition of Hymns only ("Companion" Hymnal), 60 cts.
Metrical Tune Book. by Paire Pmuirs.
Quartet and Chorus Choir. by J. p. пozsrooz.
Containing Mnsic for the Unadapted Hymns in Songs for the Sanctuary.
Pilgrim Melodies. By J. e. Sweetser.
Christian Melodies. by geo. b. Cuesver. Hfmns and Toues. Mount Zion Collection. by т. e. Pzeriss. For the Choir.
Selah. By Tros. Hestings. For the Chofr.

Public Worship (Partly Responsive)

Containing complete aervices (not Epiecopal) for ife Sabbaths: for uee in echools, public institutions, summer resorts, chnrches withont a settled pastor; in short, wherever Chrietians desire to worship-no clergyman being present.

The Union Prayer Book,

A Manual for Public and Prirate Worahip. With those featnres which are ob jectionable to other denominations of Christians than Epiecopal ellminated of modified. Contains a Service for Sunday Schools and Family Prayers.

The Psalter,

Selections from the Psalms, for reeponsive reading.

LATEST PUBLICATIONS.

The Commonwealth Reconstructed-Clark, - - \$150

Setting forth why our democracy is a partial failure, with a remedial method.
Nine Lectures on Preaching-Dale, - - 150
By Rev. R. W. Dale, of England. Delivered at Yale College, October 187\%. Contents : Perils of Young Preachers; The Intellect in Relation to Preaching; Reading; Preparation of Sermons; Extemporaneous Preaching; Evangelistic Preaching; Pastoral Preaching; Conduct of Public Worship.
The Working Classes in Europe-Hughes,
Choice Articles from the "International Review" on Labor, Repnblican Government, and kindred topics. By Thomas Hughes, M.P., and other competent writers.

> Our National Currency-Amasa Walker, - - - 050 The money problem in all its bearings.

The World's Fair in 1876-F. A. Walker, - 075
An historical and critical account by the distinguished chief of the Bureau of Awards, Gen. Francis A. Walker.
Student's Common-Place Book-Fox, - - $\$ 45^{\circ}$
The result of over thirty years effective reading by a clergyman and teacher, forming a Cyclopedia of Illnstration and Fact. Interleaved for Additions by the owner; thus combining a printed Manual of Literatnre with the Blanks of an Index Rerum. Its double value will make it the favorite book of the library.
Biographical and Critical Essays-Atlas Series, -
I 50
Choice articles from the International Review on Macaulay, Ticknor, Ernst Curtius, Hamerton, Longfellow, Bryant, Poe, Chas. Tennyson, Freeman, Sumner, John Stuart Mill, By Edward A. Freeman, and other eminent writers.

Formation of Religious Opinions-Palmer,

Hints for the benefit of young people who have fonnd themselves disturbed by inward questionngs or doubts concerning the Christian faith.

Outlines of English Literature-Gilman,

Gives, within the compass of two hundred pages, a suggestive outline sketch of the history of English Literatnre, gronping authors in accordance with the development of the language and literature.

PERIODICALS.

The International Review,
As its title indicates, presents "the ripest and best thought of the age " in all countries ${ }_{3}$ Its contribntors are the leading thinkers and writers of both Continents. Published bi-monthly, $\$ 5.00$ per year. Bound volnmes for 1874 and succeeding years, each, $\$ 6.00$.

Magazine of American History,

For the collection and preservation of all material relating to our conntry, Edited by John Austin Stevens, Librarian of the New York Historical Society. Monthly, $\$ 5.00$ per year.

This book is DUE on the last date stamped below.

Engunearala

4

A 0001696749
D28n

AJyiliary
 "Pッ

vill2

[^0]: * Major Whistler, the engineer, to whom was intrusted the great enterprise of constructing a railroad from St. Petersburg to Moscow, and Major Brown, who succeeded him at his death, were both graduates of the Military Academy.

[^1]: * There are four rules which aid us in framing definitions.

 1st. The definition must be adequate: that is, neither toc extended, nor too narrow for the word defined.
 2d. The definition must be in itself plainer than the word defined, else it would not explain it.

 3d. The definition should be expressed in a convenient number of appropriate words.

 4th. When the definition implies the existence of a thing corresponding to the word defined, the certainty of that existence must be intuitive.

[^2]: * Under this term we include all the methods of investigation and processes of arriving at facts, except the process of reasoning.

[^3]: - Sir John Herschel's Discourse on the study of Natural Philosophy.

[^4]: * Scction 15.

[^5]: * Section 62. \dagger Section 63. \ddagger Section 4 .

[^6]: § 89. All Quantities, whether abstract or concrete, are, in mathematical science, presented

 Quantities are repre-

[^7]: * Section 27.

[^8]: § 136. United States Currency affords an ex-

 Federal Money:

[^9]: * Section 110.

[^10]: * Section 117.

[^11]: * The term ratio, as now generally used, means the quotient arising from dividing one number by another. We shall use it onlv in this sense.

[^12]: * Section 111.

[^13]: 1st. To increase the unlt.

[^14]: * Section 104.

[^15]: * Section 114.
 † Section 116.

[^16]: * Section 127. $\quad+$ Section $120 . \quad \ddagger$ Section 130 .

[^17]: * Section 200.

[^18]: True practical

[^19]: * Section 94.

[^20]: * Section 109.

[^21]: * Olmsted's Mechanics, p. $28 . \quad$ + Ibid. p. 23.

[^22]: * Section 78.

[^23]: * Section 292.

[^24]: - Note. - The italics are added; they are not in the text.

[^25]: * Sir John Herschel, Discourse on the study of Natural Philosophy.

[^26]: * Mansfield's Discourse on the Mathematics.

[^27]: * Mansfield's Discourses on Mathematics
 + Lord Bacon.

[^28]: * Sir John Herschel on the study of Natural Philosophy

[^29]: ofecrvations taken lunar observations, the precise line of the ship's course, and its situation in it, at a determinate moment; and having ascertained this within

[^30]: * Sir John Herschel, on the study of Natural Philosophy

[^31]: $\frac{\square}{\square+1}$

[^32]: * * The Readers constitute two complete and entrely distinct series, either of which is adequate to every want of the best schools. The Spellers may accompany yithor Sorios.

[^33]: A large mass of similar "Opinions" may be obtained by addreasing the pub jahers for apecial clrcular for Davios' Mathematies. New recommendation art sablished in current numvers of the Educational Bulletin.

[^34]: One dozen steel Pens (assorted points) and Parent Ink-retaining Pew holder.

[^35]: TV For furtber testlmony of similar character, see current nombers of the IHus treter Fiducstional Bulletin.

[^36]: Fन For further testimony of a similar character, see pecial circalar, and urrent nambers of the Edacstional Builetin.

[^37]: A knowledge of the fables of antiquity, thns presented in a systematic form, is as Indispensable to the strdent of general literature as to him who would pernse intell. gently the classical authors, The mythological allusions so frequent in literature ane veadily understood with such a Key as thia

[^38]: The Mosaic Account of Creation
 The Miracle of To-day; or New Witnesses of the Oneness of Genesis and ScienceWith Essays on the Cause and Epoch of the present Inclination of the Earth's Axis, and on Cosmology. By Charles B. Warring.

